
Floating-point Gröbner Base Computation
with Ill-conditionedness Estimation ∗

Tateaki Sasaki †) and Fujio Kako ‡)

†) Institute of Mathematics, University of Tsukuba
Tsukuba-shi, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp

‡) Department of Comp. Sci., Nara Women’s University
Nara-shi, Nara 630-8506, Japan
kako@ics.nara-wu.ac.jp

Abstract

Computation of Gröbner bases of polynomial systems with coefficients of floating-point
numbers has been a serious problem in computer algebra for a long time; the computation
often becomes very unstable and people did not know how to remove the instability.
Recently, the present authors clarified the origin of instability and presented a method
to remove the instability. Unfortunately, the method is very time-consuming and not
practical. In this paper, we first investigate the instability much more deeply than in the
previous paper, then we give a theoretical analysis of the term cancellation which causes
large errors, in various cases. On the basis of this analysis, we propose a practical method
for computing the Gröbner bases with coefficients of floating-point numbers. The method
utilizes multiple precision floating-point numbers, and it removes the drawbacks of the
previous method almost completely. Furthermore, we present a method of estimating the
ill-conditionedness of the input system.

Key words and phrases: algebraic-numeric computation, approximate algebraic computa-
tion, cancellation error, floating-point Gröbner base, Gröbner base, instability, stabilization,
symbolic-numeric computation.

∗Work supported in part by Japan Society for the Promotion of Science under Grants 19300001.

1

1 Introduction

Algebraic computation of polynomials with floating-point numbers is a recent hot theme in
computer algebra, and many works have been done on the approximate GCD (greatest common
divisor), on the approximate polynomial factorization, and so on [14]. However, computation
of Gröbner bases with floating-point numbers (floating-point Gröbner bases, in short) is just
at the beginning of research, although it is a very important theme in approximate algebraic
computation (approximate algebra). There are two kinds of floating-point Gröbner bases: the
first kind is such that the coefficients of input polynomials are exact (algebraic numbers or
real/complex numbers) but we approximate them by floating-point numbers for convenience,
and the second kind is such that the coefficients are inexact hence we express them by floating-
point numbers. This paper deals with the second kind.

The first kind floating-point Gröbner bases were studied by Shirayanagi and Sweedler [9,
10, 12]. The second kind floating-point Gröbner bases were studied by Stetter [13], Fortuna,
Gianni and Trager [4], Traverso and Zanoni [17], Traverso [16], Weispfenning [18], Kondratyev,
Stetter and Winkler [7], Gonzalez-Vega, Traverso and Zanoni [5], Stetter [15], Bodrato and
Zanoni [1], Mourrain and his coworkers [8], and so on. It was, however, a serious problem for
long years. A breakthrough was attained recently by [11], in which the authors clarified the
origin of instability of computation and proposed a stable method.

According to [11], there are two origins of instability: one is main-term cancellation (for
main terms, see the beginning of 2), and the other is appearance of fully erroneous terms. The
S-polynomial construction and the M-reduction can be formulated by matrices with entries of
the numerical coefficients of polynomials concerned, as will be seen in 3. As is well known,
matrix elimination often causes very large cancellations. The same is true in the Gröbner base
computation; in the subtraction of two polynomials, all of their main terms often cancel one
another, causing large errors. The main-term cancellation is often exact, and exact cancellation
with floating-point numbers usually yields a fully erroneous term. If a fully erroneous term
appears as the leading term, subsequent computation will be ruined completely.

In [11], the authors classified the term cancellation into two types, cancellation due to self-
reduction and intrinsic cancellation. The self-reduction is caused by a polynomial with small
or large leading term, just as the elimination by a small pivot row causes large cancellations in
Gaussian elimination. The numerical errors due to the self-reduction are removable, as we will
explain below. The intrinsic cancellations are similar to numerical cancellations which occur
in ill-conditioned matrices; see Example 1 in 2. We want to know the amount of intrinsic
cancellation. One reason is that the accuracy of floating-point Gröbner base is decreased by
the amount of intrinsic cancellation. Another reason is that, as was shown in [11], it seems to
be crucial for constructing approximate Gröbner base.

In [11], the authors proposed a method to overcome the instability of computation. As
for the cancellation due to the self-reduction, they proposed to replace each small leading
coefficient by an independent symbol and, in the case of large leading term, multiply a symbol
to the terms other than the leading term. We call this method symbolic coefficient method.
As for fully erroneous terms, they remove such terms by representing numeric coefficients by
“effective floating-point numbers (efloats)”; we explain the efloat in 4.

The efloats work quite well. However, the symbolic coefficient method has two serious
drawbacks: 1) it is very time-consuming because we must handle polynomials with symbolic
coefficients, and 2) it cannot completely remove the errors due to the self-reduction, because

2

even a leading term of relative magnitude 0.3, say, may cause considerable errors.
In this paper, we propose a new method for removing the errors due to the self-reduction.

The new method does not introduce any symbol but it employs multiple precision effective
floating-point numbers (big-efloats), hence the method is much more efficient than the symbolic
coefficient method. In the new method, the self-reduction is not avoided but we will show that
it does not damage the accuracy of the Gröbner base computed. Furthermore, we propose a
method to estimate the amount of intrinsic cancellation, by subtracting terms which will be
canceled by the self-reduction as far as possible.

In 2, we revisit the self-reduction and point out various kinds of self-reductions. In 3, we
analyze the main-term cancellation theoretically for the self-reductions pointed out in 2. In 4,
we explain big-efloats and show that the self-reduction causes no problem in big-efloat compu-
tation, and we propose a new practical method. In 5, we describe details of the implementation
and show an example for estimating the intrinsic cancellation.

2 Instability due to the self-reduction

First of all, we emphasize that we compute Gröbner bases by successive eliminations
of leading terms. This is crucial in the following arguments.

By F,G, etc., we denote multivariate polynomials with coefficients of floating-point numbers.
The norm of polynomial F is denoted by ‖F‖; in this paper, we employ the infinity norm, i.e.,
the maximum of the absolute values of the numerical coefficients of F . For notions on Gröbner
base, we follow [3]. The power product is a term with no coefficient. By lt(F), lc(F) and rt(F)
we denote the leading term, the leading coefficient and the reductum, respectively, of F , w.r.t. a
term order Â: F = lt(F)+ rt(F) with lt(F) Â rt(F). By Spol(F,G) and Lred(F,G) we denote
the S-polynomial of F and G and the M-reduction of lt(F) by G, respectively; Lred(F,G) is

often expressed as F
G−→ F̃ . By F

G−→→ F̃ we denote successive M-reductions of F by G so
that lt(F̃) is no more M-reducible by G.

We first explain the intrinsic cancellation by an example.

Example 1 Simple example which causes the intrinsic cancellation.
P1 = 57/56 x2y + 68/67 xz2 − 79/78xy + 89/88 x
P2 = xyz3 − xy2z + xyz
P3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y

 (2.1)

We convert P1, P2, P3 into erroneous polynomials by converting their coefficients into double
precision floating-point numbers, and compute a Gröbner base with 30-digit floating-point
numbers, obtaining the following unreduced Gröbner base (underlined figures are correct).

P1, P2, P3 are unchanged,

P6 = y2z2 − 2.995436947732552644538319700370xy2

− 1.0020782165123748257674951096740 y3

+ 1.9983254691737245140192885621560xy + • • • ,

P7 = xz2 − 1.764316342370426661429391997320e−3 yz2

− 9.947232450186805419457332443380e−1 xy
+ 1.7679829737261936385647927531480e−3 y2 + • • • .

3

We see that the accuracy has been decreased by O(104), which is the same in the computation
with double precision floating-point numbers. Later, we will see that the errors due to the
self-reduction will disappear if we increase the precision. 2

We next explain the self-reduction. In the following, we use notations F ≈ G if ‖F−G‖ ¿
‖G‖ and ‖F‖ = O(‖G‖) if η < ‖F‖/‖G‖ < 1/η, where η is a positive number less than 1 but
not much less than 1. (In our computer program, we set η = 0.2 and specify ‖G‖ ¿ ‖F‖ to
te ‖G‖ < 0.2 × ‖F‖.) We call a term T of F a main term if ‖T‖ = O(‖F‖). Let F1 and F2

be normal polynomials, i.e., |lc(Fi)| = O(‖rt(Fi)‖) (i = 1, 2), and let G be a polynomial with
small leading term, ‖lc(G)‖ ¿ ‖G‖. Suppose that F1 and F2 are M-reduced by G as

F1
G−→→ F̃1, F2

G−→→ F̃2 (F1 6= F̃1, F2 6= F̃2). (2.2)

Then, so long as |lc(F1)|/‖F1‖ À |lc(G)|/‖G‖, we have

F̃1 ≈ M1 rt(G) and F̃2 ≈ M2 rt(G), (2.3)

where M1 and M2 are monomials. In this case, we call F̃1 and F̃2 clones of G and represent as
F̃i = clone(G) (i = 1, 2). Next, we assume that

lt(F̃1) ≈ lt(M1 rt(G)) and lt(F̃2) ≈ lt(M2 rt(G)). (2.4)

We consider what happens in Spol(F̃1, F̃2); we do not consider Lred(F̃1, F̃2) or Lred(F̃2, F̃1)
because Spol(F̃1, F̃2) = Lred(F̃1, F̃2) if lt(F̃2) | lt(F̃1) and Spol(F̃1, F̃2) = −Lred(F̃2, F̃1) if
lt(F̃1) | lt(F̃2). Let Spol(F̃1, F̃2) = M̃1F̃1 − M̃2F̃2, where M̃1 and M̃2 are monomials. With
condition (2.3), we have Spol(F̃1, F̃2) ≈ M̃1M1 rt(G) − M̃2M2 rt(G) and condition (2.4) tells
us ‖M̃1M1 rt(G) − M̃2M2 rt(G)‖ ¿ ‖M̃1M1 rt(G)‖. This means that all the main terms of
M̃1M1 rt(G) and M̃2M2 rt(G) cancel each other; the cancellation is exact if

lt(F̃1) = lt(M1 rt(G)) and lt(F̃2) = lt(M2 rt(G)). (2.5)

Obviously, the above argument is valid for the case of F̃1 = Spol(F1, G) and/or F̃2 = Spol(F2, G).
The above cancellation of all the main terms in clones was called “self-reduction” in [11]. We
see that the self-reduction is caused by polynomials with small leading terms.

Definition 1 (likeness of clone) Let F and G be polynomials of norm 1. Let F̃ be a clone
of G: F̃ = clone(G). We call ‖F̃‖/‖rt(G)‖ likeness of the clone.

We must be careful in treating binomials with small leading terms. Let F1 and F2 be normal
polynomials as given above, and let the reducer G be a binomial with small leading term: G =
g1T1 +g2T2 with |g1| ¿ |g2|, where T1 and T2 are power products. Then, Lred(F1, G) becomes a
polynomial with one large term, and so is Lred(F2, G). If T2 is contained in leading terms of both
F̃1 and F̃2 then Spol(F̃1, F̃2) does not cause the self-reduction; both the large leading terms of F̃1

and F̃2 cancel each other. The self-reduction occurs only when |lc(F̃1)|/‖F̃1‖ ≈ |lc(F̃2)|/‖F̃2‖
and lt(F̃2)T̃1 = lt(F̃1)T̃2 up to a constant, where T̃i is the large term in F̃i (i = 1, 2), which
is extremely rare to occur. We must notice, however, that G generates a polynomial with one
large term. If the large term is the leading term then it may cause the self-reduction, as we will
explain below. Even if the large term is not the leading term, subsequent M-reductions may
generate a polynomial with large leading term.

4

Large leading terms can also cause the self-reduction, but the situation is pretty different.
Let F1 and F2 be polynomials with large leading terms, and G be a normal polynomial:

|lc(Fi)| ¿ ‖rt(Fi)‖ (i = 1, 2), |lc(G)| = O(‖rt(G)‖). (2.6)

Then, we have (i = 1, 2)

Lred(Fi, G) = Fi − lc(Fi)/lc(G) · MiG ≈ −lc(Fi)/lc(G) · Mirt(G), (2.7)

where M1 and M2 are power products. Therefore, Lred(Fi, G) is a clone of G, and the self-
reduction may occur in Spol(Lred(F1, G), Lred(F2, G)). Note that the self-reduction requires
two polynomials with large leading terms. Therefore, the self-reduction by polynomials with
large leading terms is less frequent than that by polynomials with small leading terms. Note
further that the M-reduction of a polynomial F with a large leading term by a polynomial G with
a small leading term generates a clone of very large likeness: the likeness is (|lc(F)|/‖rt(F)‖) ·
(‖G‖/|lc(G)|).

We have a more complicated case of self-reduction which seldom occurs. Let F1 and F2

be normal polynomials as above, and let F1 and F2 be M-reduced, respectively, by G1 and G2

which are polynomials with small leading terms: Fi
Gi−→ F̃i = Fi − MiGi (i = 1, 2). Then, we

have F̃1 ≈ M1 rt(G1) and F̃2 ≈ M2 rt(G2). Consider Spol(F̃1, F̃2)
def
= M̃1F̃1 − M̃2F̃2, where M̃1

and M̃2 are monomials. We assume that the following relations hold,

lt(F̃i) Â Mi rt(Gi) (i = 1, 2), rt(M̃1F̃1) Â rt(M̃2F̃2) (2.8)

and that we have polynomials G̃1 ≈ N1 rt(G1) and G̃2 ≈ N2 rt(G2), with N1 and N2 mono-
mials, satisfying lt(G̃i) | lt(M̃i rt(F̃i)) (i = 1, 2). By assumption, Spol(F̃1, F̃2) contains terms
M̃1M1 rt(G1) and M̃2M2 rt(G2), hence there is a possibility that the main terms of Spol(F̃1, F̃2)
are canceled by successive M-reductions by G̃1 and G̃2. We call this self-reduction paired
self-reduction. The paired self-reduction requires additional rather severe conditions: the M-
reduction by G̃1 does not change the leading term of M̃2F̃2 and that lt(M̃2F̃2) is the leading
term of Lred(Spol(F̃1, F̃2), G̃1).

The polynomial F may be M-reduced by G1, . . . , Gm successively, where G1, . . . , Gm are

polynomials with small leading terms: F
G1−→→ · · · Gm−→→ F̃ . In this case, we call F̃ a multiple

clone, and represent it as clone(G1, . . . , Gm). We will encounter double clones just below.

Example 2 Simple system causing large errors (an example shown in [11]).
P1 = x3/10.0 + 3.0x2y + 1.0y2

P2 = 1.0x2y2 − 3.0xy2 − 1.0xy
P3 = y3/10.0 + 2.0x2


We compute a Gröbner base w.r.t. the total-degree order, with double precision floating-point
numbers, just as we compute a Gröbner base over Q. We show about two-thirds of the whole

5

steps.

Spol(P3, P2)
P1−→ P1−→ P2−→ P3−→

P1

−→ P4 /∗ P4 = clone(P1)

P4 = x2y + 29.8 · · ·xy2 + 3.33 · · · y3 + 10.0xy + 0.333 · · · y2

P2
P4−→ P3−→

P1

−→
P4

−→ P ′
2 /∗ P ′

2 = clone(P1, P4)

P ′
2 = xy2 + 0.111 · · · y3 + 0.334 · · ·xy − 0.000041 · · · y2

Spol(P3, P
′
2)

P3−→
P1

−→
P4

−→
P ′

2

−→ P3−→ P5 /∗ self-reduction
P5 = x2 + 7.14 · · ·xy + 0.573 · · · y2

P4
P5−→ P ′

2−→ P3−→
P5

−→ P ′
4 /∗ P ′

4 = clone(P5)

P ′
4 = xy + 0.0844 · · · y2

P ′
2

P ′
4−→ P3−→

P5

−→
P ′

4

−→ P ′′
2 /∗ self-reduction

Here, the polynomials boxed show clones and reducers which generate clones, and the clones
and the self-reductions are commented in the right column. The above computation causes a
very large cancellation: self-reductions in the fifth and ninth line cause cancellations of O(108)
and O(102), respectively. Other steps of computation cause almost no cancellation.

In the first line: Spol(P3, P2) is a polynomial with large leading term and the first M-
reduction by P1 gives a clone of very large likeness, but it is erased by the subsequent M-
reduction by P2; P3 is binomial and the M-reduction by P3 does not generate a polynomial
with a large term, so we do not mind the M-reduction; the final M-reduction by P1 gives a
clone, i.e., P4 = clone(P1). In the third line: the first M-reduction by P4 gives a clone but the
clone is erased by the subsequent M-reduction by P3; the M-reduction by P1 gives a clone, and
the clone is M-reduced by P4 having a small leading term, hence P ′

2 is a double clone. In the
fifth line: M-reductions by P1 and P4 give a double clone, and the double clone is M-reduced
by another double clone P ′

2, hence there occurs the self-reduction among double clones. 2

We explain why so large cancellations occur in Example 2. The clone(P1, P4) in the third
line is a double clone generated by single M-reductions by P1 and P4, and so is the double clone
in the fifth line. Following Theorem 1 in the next section, one may think that the amount
of cancellation caused by the self-reduction is O((‖P1‖/|lc(P1)|)(‖P4‖/|lc(P4)|)). Actually, we
encounter a much larger cancellation. The reason of this superficial discrepancy is that, before
the M-reduction by P1, the polynomial concerned has been M-reduced by a binomial P3 with
a small leading term. Hence, Lred(Lred(Lred(?, P3), P1), P4) becomes a polynomial of very
large likeness. The analysis in the next section shows that the actual amount of cancellations
occurred is O((‖P1‖/|lc(P1)|)2(‖P3‖/|lc(P3)|)2). In fact, the symbolic coefficient computation
in [11] shows this symbolically.

3 Analysis of self-reductions given in 2

In [11], we analyzed only the typical self-reduction by single clones. In this section, we
analyze self-reductions given in 2, in particular, the self-reduction by multiple clones.

Following Collins [2], we introduce associated polynomial. Let Pi = ci1T1 + · · · + cimTm

(i = 1, . . . , n) be polynomials where T1, . . . , Tm are power products, and M = (cij) be an n×m

6

matrix, n < m. The polynomial associated with M , which we denote by assP(M), is defined
as follows.

assP


c11 · · · c1n · · · c1m
...

. . .
...

. . .
...

cn1 · · · cnn · · · cnm

 def
=

m−n∑
i=0

∣∣∣∣∣∣∣∣
c11 · · · c1,n−1 c1,n+i
...

. . .
...

...
cn1 · · · cn,n−1 cn,n+i

∣∣∣∣∣∣∣∣ Tn+i. (3.1)

Let polynomials F and F ′ be expressed as F = f1S1 + f2S2 + · · · + fmSm and F ′ =
f ′

1S
′
1 + f ′

2S
′
2 + · · · + f ′

mS ′
m, where Si and S ′

i are power products satisfying S1 Â S2 Â · · · Â Sn

and S ′
1 Â S ′

2 Â · · · Â S ′
n, Si = SS ′

i (1 ≤ i ≤ m) for some power product S and f1f
′
1 6= 0

(some of fi or f ′
i may be 0). Let polynomials G and G′ be G = g1T1 + g2T2 + · · · + gnTn and

G′ = g′
1T

′
1 + g′

2T
′
2 + · · · + g′

nT
′
n, where Ti and T ′

i are power products, Si = TTi and S ′
i = T ′T ′

i

(1 ≤ i ≤ m) for some power products T and T ′, and g1g
′
1 6= 0 (some of gi or g′

i may be 0). We
consider the case that both F and F ′ are k times M-reduced by G and then k′ times M-reduced

by G′: F
G−→ · · · G−→ G′

−→ · · · G′
−→ F̃ and F ′ G−→ · · · G−→ G′

−→ · · · G′
−→ F̃ ′, hence F̃ and F̃ ′

are double clones of G and G′. The following lemma is well known; we can easily prove it by
mathematical inductions on k and k′ (cf. [2]).

Lemma 1 (well known) Let F , G and G′ be defined as above. Suppose F is k times M-
reduced by G then k′ times M-reduced by G′ (only the leading terms are M-reduced), then the
resulting polynomial F̃ can be expressed as (we discard a constant multiplier)

F̃ = assP



f1 f2 · · · fn fn+1 · · · · · ·
g1 g2 · · · gn

. · · · . . .

g′
1 g′

2 · · · g′
n

. · · · . . .

 , (3.2)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′
1 · · · g′

n · · ·)-rows are k and k′, respectively.
Here, polynomials F , G and G′ are added suitably by zero-coefficient terms so that the elements
in each column in the above matrix correspond to the same monomial.

Theorem 1 Let F , F ′, F̃ and F̃ ′ be as above, and assume that lt(F̃)/lc(F̃) = S lt(F̃ ′)/lc(F̃ ′),
with S a power product. Let F̃ and F̃ ′ be expressed as in (3.2) (for F̃ ′, we must replace the top
row by (f ′

1f
′
2 · · · f ′

n · · ·)). Then, lc(F̃ ′)F̃ − lc(F̃)SF̃ ′ can be factored as

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 · · · gk · · · gk+k′

. · · · ...
g′
1 · · · g′

k′

. . .
...
g′
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
× assP



f1 f2 · · · fn fn+1 · · · · · ·
f ′

1 f ′
2 · · · f ′

n f ′
n+1 · · · · · ·

g1 g2 · · · gn

. · · · . . .

g′
1 g′

2 · · · g′
n

. · · · . . .


, (3.3)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′
1 · · · g′

n · · ·)-rows are k and k′,
respectively.

7

Proof The coefficient of Sk+k′+i (i ≥ 2) term is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · · . . .
...

...
g′
1 · · · g′

k′ g′
k′+1

. . .
...

...
g′
1 g′

1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · · . . .
...

...
g′
1 · · · g′

k′ g′
k′+i

. . .
...

...
g′
1 g′

1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.4)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · · . . .
...

...
g′
1 · · · g′

k′ g′
k′+1

. . .
...

...
g′
1 g′

1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · · . . .
...

...
g′
1 · · · g′

k′ g′
k′+i

. . .
...

...
g′
1 g′

1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Sylvester identity allows us to factor the above expression as

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 · · · gk · · · gk+k′

. . . · · · . . .
...

g′
1 · · · g′

k′

. . .
...
g′
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+1 fk+k′+i

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1 f ′
k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+1 gk+k′+i

. . . · · · . . .
...

...
...

g′
1 · · · g′

k′ g′
k′+1 g′

k′+i
. . .

...
...

...
g′
1 g′

1+1 g′
1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.5)

This proves the theorem. 2

Remark 1 We may define the self-reduction to be the main-term cancellation which occurs
in the computation from (3.4) to (3.5). A possible main-term cancellation which occurs in the
computation of the right determinant in (3.5) is the intrinsic cancellation. 2

Remark 2 Consider the case that F is k1 times M-reduced by G then k′
1 times M-reduced

by G′ and F ′ is k2 times M-reduced by G then k′
2 times M-reduced by G′. If k1 > k2, for

example, then we put k = k2 and treat k1 − k2 times M-reduction of F as a new F . If k′
1 6= k′

2

then F̃ and F̃ ′ are not double clones but we must treat them as single clones of G′. 2

The above theorem is valid for any G and G′, regardless of the magnitudes of leading terms
of G and G′. The theorem tells us that term cancellations occur frequently: all the terms
that do not proportional to gk

1g
′k′
1 cancel one another. This cancellation does not cause large

errors usually. If |lc(G)| ¿ ‖G‖ and/or |lc(G′)| ¿ ‖G′‖, however, the term cancellation is the
main-term cancellation and it causes large errors. Below, we order-estimate the amount of term
cancellation occurring in lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

By D̃1, D̃′
1, D̃i and D̃′

i, we denote the determinants representing lc(F̃), lc(F̃ ′), the coefficient
of Sk+k′+i term of F̃ , and the coefficient of Sk+k′+i term of SF̃ , respectively, hence the first
expression in the proof of Theorem 1 is D̃′

1D̃i − D̃1D̃′
i. Furthermore, by D̃1i, we denote the

8

determinant of order k + k′ + 2 in the r.h.s. of (3.5). The magnitudes of D̃1 etc. change
complicatedly as the situation changes, so we assume that the coefficients of F and F ′ are as
follows.

f1 = f ′
1 = 1, fi = 0 or O(1), f ′

i = 0 or O(1) (i ≥ 2). (3.6)

Corollary 1 Let the coefficients of F1 and F2 be as in (3.6). Let reducers G and G′ be polyno-
mials with coefficients such that

|g1| ¿ 1, g2 = · · · = gl−1 = 0, |gl | = O(1), |gl+i | = O(1) or 0,

|g′
1| ¿ 1, g′

2 = · · · = g′
l′−1 = 0, |g′

l′| = O(1), |g′
l′+i| = O(1) or 0.

(3.7)

Claim1: when l = l′ = 2 (hence g2 = O(1) and g′
2 = O(1)), there occurs cancellation of amount

O((1/g1)
k(1/g′

1)
k′

) in the computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.
Claim 2: when l ≥ 3 and/or l′ ≥ 3 (hence g2 = 0 and/or g′

2 = 0), let |D̃1| = O((g1)
κ1(g′

1)
κ′
1),

|D̃i| = O((g1)
κi(g′

1)
κ′

i) and |D̃1i| = O((g1)
κ̃(g′

1)
κ̃′

), then there occurs cancellation of amount
O((1/g1)

k−κ1−κi+κ̃ (1/g′
1)

k′−κ′
1−κ′

i+κ̃′
) in the computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

Proof When l = l′ = 2, consider D̃1 for example. The product of diagonal elements gives
the main term of D̃1, because other terms contain at least one g1 or g′

1. Similarly, if we consider
such D̃1i such that f ′

k+k′+i 6= 0, we see that D̃1i = O(1). Then, determinants in (3.5) lead us

to Claim 1. The determinants also leads us to Claim 2, because the main terms of D̃′
1D̃ and

D̃1D̃′
i must be of the same order. 2

Determination of κ̃1, κ̃
′
1, κ̃i, κ̃

′
i, κ̃ and κ̃′ in the general case of l ≥ 3 and/or l′ ≥ 3 is messy.

Because of the page limit, we omit the determination.
Theorem 1 allows us to analyze the self-reduction caused by polynomials with large leading

terms and the paired self-reduction, too. For the case of large leading terms, we put F1 = F ,
F2 = F ′ and G′ = G, and assume that the leading terms of F and F ′ are large. Then, estimating
the magnitudes of determinants in (3.5), we obtain the following corollary which can be easily
generalized to the case that F1 and/or F2 contain several large terms at their heads.

Corollary 2 Let F1 and F2 be polynomials with large leading term such that |lc(Fi)| À ‖rt(Fi)‖
(i = 1, 2), and let G be a normal polynomial. Put F̃i = Lred(Fi, G) (i = 1, 2). Then, in the
computation of Spol(F̃1, F̃2), there occurs main-term cancellation of magnitude
min(|lc(F1)|/‖rt(F1)‖, |lc(F2)|/‖rt(F2)‖).

We next consider the paired self-reduction. We put F1 = F, F2 = F ′, G1 = G and G2 = G′.
For simplicity, we consider the case of F̃ = Lred(F,G) and F̃ ′ = Lred(F ′, G′); the case of
multiple M-reductions can be treated similarly. The relations in (2.8) tell us that F̃ and F̃ ′ can
be expressed as

F̃ = assP

(
f1 f̂1 f2 · · ·
g1 0 g2 · · ·

)
, F̃ ′ = assP

(
f ′

1 f̂ ′
1 f ′

2 · · ·
g′
1 0 g′

2 · · ·

)
,

and we can express Spol(F̃ , F̃ ′) = M̃F̃ − M̃ ′F̃ ′ = rt(M̃F̃) − rt(M̃ ′F̃ ′) as

M̃ · assP

(
f1 f2 f3 · · ·
g1 g2 g3 · · ·

)
− M̃ ′ · assP

(
f ′

1 f ′
2 f ′

3 · · ·
g′
1 g′

2 g′
3 · · ·

)
.

9

The existence of G̃ and G̃′ satisfying G̃ ≈ N rt(G) and G̃′ ≈ N ′rt(G′), respectively, means
that G̃ and G̃′ are obtained by M-reducing H and H ′, say, by G and G′, respectively: G̃ =
Lred(H,G), G̃′ = Lred(H ′, G′). Hence, we can express G̃ and G̃′ as

G̃ = assP

(
h1 h2 h3 · · ·
g1 g2 g3 · · ·

)
, G̃′ = assP

(
h′

1 h′
2 h′

3 · · ·
g′
1 g′

2 g′
3 · · ·

)
.

Furthermore, occurrence of the paired self-reduction means that rt(M̃F̃) and rt(M̃ ′F̃ ′) are
M-reducible by G̃ and G̃′, respectively. Therefore, applying Theorem 1, with k = k′ = 1, to
Lred(rt(M̃F̃), G̃) and Lred(rt(M̃ ′F̃ ′), G̃′) separately, we obtain the following corollary.

Corollary 3 Let F, F ′, H and H ′ be normal polynomials and G and G′ be polynomials with
small leading terms, and let G̃ = Lred(H,G) and G̃′ = Lred(H ′, G′). If the paired self-reduction
occurs on Spol(F̃ , F̃ ′) by G̃ and G̃′, then the paired self-reduction causes the main-term cancel-
lation of magnitude min(‖F‖/|lc(G)|, ‖H‖/|lc(G)|, ‖F ′‖/|lc(G′)|, ‖H ′‖/|lc(G′)|).

4 New method of stabilization

We propose a new method of stabilization. The method does not introduce any symbol but
utilizes big-efloats, hence it is practical and much more efficient than the previous one.

First, we explain the efloats briefly. The efloat was proposed by the present authors in 1997
[6] so as to detect the cancellation errors automatically. The efloat is a pair of two floating-point
numbers and expressed as #E[f, e]; we call f and e value-part and error-part, respectively. The
arithmetic of efloats is as follows.

#E[fa, ea] + #E[fb, eb] =⇒ #E[fa + fb, max{ea, eb}],
#E[fa, ea] − #E[fb, eb] =⇒ #E[fa − fb, max{ea, eb}],
#E[fa, ea] × #E[fb, eb] =⇒ #E[fa × fb, max{|fbea|, |faeb|}],
#E[fa, ea] ÷ #E[fb, eb] =⇒ #E[fa ÷ fb, max{|ea/fb|, |faeb/f

2
b |}].

(4.1)

Thus, the value-part of efloat number is nothing but the conventional floating-point value. On
the other hand, the error-part of efloat number represents the cancellation error approximately;
the rounding errors are neglected in determining the error-parts. Similarly, we neglect the
rounding errors throughout the following arguments.

The efloats allow us not only to estimate total amount of cancellation occurred on each
coefficient but also to remove the fully erroneous terms as follows. Let εm be the machine
epsilon of the floating-point numbers (the smallest mantissa of the floating-point numbers).
We set the error-part of each efloat coefficient to about 5εm× value-part (for the big-efloat, we
set the error-part larger). In our algebra system named GAL, the efloat #E[f, e] with |f | < e
is automatically set to 0. Therefore, GAL sets fully erroneous terms to 0, unless the rounding
errors accumulate to 5εm or more, which is extremely rare in practice.

The big-efloat is expressed as #BE[f, e], where f is a multiple precision floating-point
number, and it is processed by the same arithmetic as efloat. We denote the smallest mantissa
of big-efloats by εM. We consider that the input coefficients are inexact in general; let the
relative error of a coefficient be ε. In the floating-point Gröbner base computation, we should
assume that ε is not less than εm: ε ≥ εm À εM. We will convert each coefficient of the input

10

polynomials into a big-efloat. We say that a big-efloat is of accuracy 1/ε if it contains an
error of relative magnitude ε. Then, one may think that cancellations of main terms by self-
reduction will decrease the accuracy of big-efloat coefficients. Surprisingly, in all the cases we
have investigated in 3, the cancellation due to the self-reduction does not decrease the accuracy,
as we will show just below.

Theorem 2 So long as the self-reductions treated in 3 are concerned, the main-term cancella-
tion due to the self-reduction ruins only tail figures of the coefficients concerned; if the amount
of cancellation is O(10κ) then tail κ figures of coefficients concerned are ruined.

Proof We note that, although the big-efloats in our case contain relative errors which are
much larger than εM, the errors are represented correctly within the precision and treated as
definite numbers given initially. Furthermore, Theorem 1 and Corollaries 1 ∼ 3 imply that the
main terms cancel exactly in the self-reduction, hence the self-reduction ruins only tail figures
of the coefficients concerned. 2

Example 3 Check Theorem 2 by the system in Example 2.
We convert the coefficients into double precision floating-point numbers, and compute the
Gröbner base with big-efloats of 30 decimal precision. For reference, we show the initial poly-
nomials; note that the rounding errors appear at the 17th decimal places.

P1 = + #BE[3.33333333333333330e−2, 2.0e−28] x3 + x2y
+ #BE[3.33333333333333310e−1, 3.2e−27] y2,

P2 = + #BE[3.33333333333333310e−1, 3.2e−27] x2y2 − xy2,
− #BE[3.33333333333333310e−1, 3.2e−27] xy

P3 = + #BE[5.0000000000000000e−2, 3.9e−28] y3 + x2.

The Spol(P3, P1), for example, is M-reduced and normalized as follows; we see that 17th to
30th figures of xy3 term are contaminated by rounding errors.

x4 + #BE[1.5000000000000001665334536937720e−1, 3.9e−28] xy3

+ #BE[5.0000000000000000e−2, 2.0e−28] xy2.

We obtain the following unreduced Gröbner base (underlines show correct figures).
P ′′

2 = y2,
P ′

4 = xy + #BE[8.440225504521958676289311654600e−2, 3.3e−21] y2,
P5 = x2 + #BE[7.148496897462707006365493318940, 4.2e−19] xy

+ #BE[5.737161395246457225742044589410e−1, 2.6e−20] y2.

Although large cancellations have occurred, the accuracy decrease is only a little. 2

Now, we describe our new method which is based on Theorem 2 crucially. The method is
composed of the following three devices.

Device 1: Convert the numeric coefficients of each input polynomial into big-efloats of a
suitably determined initial precision, and compute the Gröbner base as usual.

Device 2: Monitor the error-parts of big-efloat coefficients during the computation, and if
the relative error-parts become too large then increase the precision of big-efloats and
retry the computation.

11

Device 3: Monitor the clone generation of likeness greater than 5.0, say. If the self-reduction
occurs in the subtraction F̃1 − F̃2, where F̃1 = clone(G) and F̃2 = clone(G), say, then we
subtract G from both F̃1 and F̃2 as F̃ ′

1 := F̃1−G and F̃ ′
2 := F̃2−G, and compute F̃ ′

1− F̃ ′
2.

We call this operation reducer subtraction. Regard the possible cancellation occurring in
the subtraction F̃ ′

1 − F̃ ′
2 as the intrinsic cancellation.

With Devices 1 and 2, we can remove the cancellation errors due to the self-reduction
completely; the number 5.0 for specifying the clone in Device 3 is irrelevant to this removal.
As for the intrinsic cancellation, authors of [1] and [11] defined the cancellation in terms of
syzygies. The computation of syzygies is quite costly in practice. On the other hand, the
reducer subtraction is not a costly operation (see 5 for implementation), hence our method is
practical. However, it should be mentioned that Device 3 will miss to remove small amounts
of cancellations due to small self-reductions, because we neglect the clones of likeness ≤ 5.
Therefore, the above method will over-estimate the amount of intrinsic cancellation.

5 Implementation details

Although our ideas given above are simple, actual implementation of the Device 3 requires
various detailed considerations.

5.1 Representation of clones

In our current program, each input polynomial or S-polynomial generated is numbered
uniquely, say Fi (i ∈ N), and the numbering is not changed if the polynomial is M-reduced;
if Fi is M-reduced to 0 then Fi is removed from the memory. Suppose a polynomial Fi is
M-reduced by Gj to become a clone of Gj. It is not enough to save the index j to specify the
clone; we must save the current Gj because Gj itself will be changed during the computation.
Let the M-reduction be Fi := Fi−cjTjGj, where cj ∈ C and Tj is a power product. Fi is usually
M-reduced by Gj many times, say Fi := (Fi − cjTjGj) − c′jT

′
jG

′
j. The multiplier cj changes

from the M-reduction to M-reduction, hence we must save the multipliers, too. Therefore, we
represent clones generated from Gj as follows.

1. Normalize Gj so that its leading coefficient is 1.

2. Represent each clone by triplet 〈hj, cj, TjGj〉 which we call clone-triplet.

3. Save the clone-triplets for Fi into a list and attach the list to Fi. For example

, if Fi
Gj−→

Gj′−→ · · ·, then the list is (· · · 〈j′, c′j′ , T ′
j′Gj′〉 〈j, cj, TjGj〉).

5.2 Criteria for clone generation and self-reduction

In our current program, we neglect the paired self-reduction because it occurs very rarely
while its implementation is messy. Hence, the following criteria are easy ones and not complete.
Suppose the clone-triplet lists for polynomials F1 and F2 are

F1 : (〈j1, c1, T1G1〉 〈j′1, c′1, T ′
1G

′
1〉 · · ·),

F2 : (〈j2, c2, T2G2〉 〈j′2, c′2, T ′
2G

′
2〉 · · ·). (5.1)

12

As we have noticed in 2, we consider only Spol(F1, F2) below. If T1G1 6= T2G2 then Spol(F1, F2)
is not the self-reduction. Does the self-reduction occur always if T1G1 = T2G2 ? The answer is
not always YES; the answer is YES only when the relations in (2.4) hold. Therefore, we judge
the clone generation by the following criteria which are described for the case F̃ := F − cTG,
where T is a power product.

Criterion C1 If |lc(G)| < ‖rt(G)‖/5 then G is a polynomial with small leading term.
If |lc(G)| > 5 ‖rt(G)‖ then G is a polynomial with large leading term.

Criterion C2 For the case of small leading term:
If lt(rt(TG)) Â lt(rt(F)) and 5 |lc(F)/lc(G)| < ‖rt(F)‖/‖rt(G)‖ then F̃ = clone(G).
If lt(rt(TG)) ∝ lt(rt(F)) and 5 |lc(F)/lc(G)| < ‖rt(F)‖/‖rt(G)‖ and

5 |lc(rt(F))| < |lc(rt(TG))| then F̃ = clone(G).

Criterion C3 For the case of large leading term:
If lt(rt(TG)) Â lt(rt(F)) and |lc(F)/lc(G)| < 5 ‖rt(F)‖/‖rt(G)‖ then F̃ = clone(F).
If lt(rt(TG)) ∝ lt(rt(F)) and |lc(F)/lc(G)| < 5 ‖rt(F)‖/‖rt(G)‖ and

|lc(rt(F))| < 5 |lc(rt(TG))| then F̃ = clone(F).

With the above criteria, we can judge the self-reduction by the following criterion.

Criterion SR If j1 = j2 and T1G1 = T2G2 then Spol(F1, F2) causes the self-reduction.

Note that, if (j′1 = j′2 and T ′
1G

′
1 = T ′

2G
′
2) in addition to (j1 = j2 and T1G1 = T2G2) then

Spol(F1, F2) causes the self-reduction by double clones, and so on.

5.3 Reducer subtraction

We normalize not only clones but also each polynomial appearing in the computation so that
its leading coefficient is 1, which makes the programming easy. The normalization is made after
each M-reduction (and S-polynomial generation): F̃i := Fi− cjTjGj ⇒ F̃i := F̃i/lc(F̃i). By this
normalization, the multiplier cj must be modified accordingly: we change all the multipliers in
the clone-triplet list for Fi as 〈j, cj, TjGj〉 ⇒ 〈j, cj/lc(F̃i), TjGj〉.

If conditions in (2.5) hold then the reducer subtraction is easy: with the notations in the
previous subsection, F1 and F2 are M-reduced as F1 := F1 − c1T1G1 and F2 := F2 − c2T1G1,
and we have c1 = c2, hence we subtract c1T1G1 from both F1 and F2. If conditions in (2.5) do
not hold then we have c1 6= c2 although c1 ≈ c2. In this case, we compute c as

c =

{
c1 if |c1| ≤ |c2|,
c2 if |c1| > |c2|,

(5.2)

and subtract G1 from F1 and F2 as F1 := F1 − cT1G1 and F2 := F2 − cT1G1.

5.4 Estimating the intrinsic cancellation

The actual term cancellations are the sum of cancellations due to the self-reductions and the
intrinsic cancellations. Therefore, if we remove all the cancellations due to the self-reductions,
then the rest cancellations must be intrinsic cancellations. Below, we show how the intrinsic can-

cellation is estimated in Example 2, in particular at the reduction step Spol(P3, P
′
2)

P3−→ P1−→ P4−→

13

· · ·, where the self-reduction by double clones occurs and we encounter term cancellation of
O(1010). We will see that the reducers are subtracted successfully and the intrinsic cancellation
is estimated adequately.

Example 4 Intrinsic cancellation in the fifth line of Example 2.
Put Q1 = Lred(Lred(Lred(Spol(P3, P

′
2), P3), P1), P4) and let Lred(Q1, P

′
2) = Q1 − Q2, where

P ′
2 = clone(P1, P4). Below, underlines show figures which are same in both Q1 and Q2 (or Q′

1

and Q′
2).

Q1 = + #BE[1.1152418136789309558453405171e−1, 8.6e−28] y3

+ #BE[3.3457253711642806415804801040e−1, 3.7e−27] xy
− #BE[4.1613506289664168782840449950e−5, 1.1e−28] y2,

Q2 = − #BE[1.1152418132002535431698179200e−1, 8.6e−28] y3

− #BE[3.3457254396007606295094537600e−1, 3.7e−27] xy
+ #BE[4.1612957039749613089747630908e−5, 1.1e−28] y2.

Subtracting a multiple of P4 from Q1 and Q2, we obtain Q1 → Q′
1 and Q2 → Q′

2:

Q′
1 = + #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3

− #BE[1.1194031410170599640717774130e−2, 1.1e−28] y2,

Q′
2 = − #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

− #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy
+ #BE[1.1194030860920685085024681310e−2, 1.1e−28] y2.

Subtracting a multiple of P1 from Q′
1 and Q′

2, we obtain Q′
1 → Q′′

1 and Q′
2 → Q′′

2:

S ′′
1 = + #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3,

S ′′
2 = − #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

− #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy
− #BE[5.4924991455569309281904242148e−10, 1.1e−28] y2.

We see O(102) cancellation occurs in Q′′
1−Q′′

2 which we regard as the intrinsic cancellation. 2

6 Concluding remarks

We showed that, restricting the M-reductions to leading-term reductions, we are able to
describe local steps of Gröbner base computation in terms of matrices and analyze the self-
reduction and intrinsic cancellation in terms of determinants (Theorem 1). Furthermore, we
showed that the main-term cancellation due to the self-reduction causes no problem if we utilize
big-efloats, so long as the self-reductions investigated in 2 are concerned (Theorem 2). We are
now trying to prove that any self-reduction causes no problem.

Our analysis suggests us that the cancellation errors will be decreased largely if the self-
reduction is avoided as far as possible. We are now developing a program package based on
this suggestion.

Finally, the authors acknowledge anonymous referees for valuable comments.

14

References

[1] M. Bodrato and A. Zanoni. Intervals, syzygies, numerical Gröbner bases: a mixed study. Proceedings of
CASC2006 (Computer Algebra in Scientific Computing); Springer-Verlag LNCS 4194, 64-76, 2006.

[2] J.E. Collins. Subresultant and reduced polynomial remainder sequence. J. ACM 14 (1967), 128-142.

[3] D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag New York, 1997.

[4] E. Fortuna, P. Gianni and B. Trager. Degree reduction under specialization. J. Pure Appl. Algebra 164
(2001), 153-164.

[5] L. Gonzalez-Vega, C. Traverso and A. Zanoni. Hilbert stratification and parametric Gröbner bases. Pro-
ceedings of CASC2005 (Computer Algebra in Scientific Computing); Springer-Verlag LNCS 3718, 220-235,
2005.

[6] F. Kako and T. Sasaki. Proposal of “effective” floating-point number. Preprint of Univ. Tsukuba, May
1997 (unpublished).

[7] A. Kondratyev, H.J. Stetter and S. Winkler. Numerical computation of Gröbner bases. Proceedings of
CASC2004 (Computer Algebra in Scientific Computing), 295-306, St. Petersburg, Russia, 2004.

[8] B. Mourrain. Pythagore’s dilemma, symbolic-numeric computation, and the border basis method.
Symbolic-Numeric Computations (Trends in Mathematics), 223-243, Birkhäuser Verlag, 2007.

[9] K. Shirayanagi. An algorithm to compute floating-point Gröbner bases. Mathematical Computation with
Maple V. Ideas and Applications, Birkhäuser, 95-106, 1993.

[10] K. Shirayanagi. Floating point Gröbner bases. Mathematics and Computers in Simulation 42 (1996),
509-528.

[11] T. Sasaki and F. Kako. Computing floating-point Gröbner base stably. Proceedings of SNC2007 (Symbolic
Numeric Computation), 180-189, London, Canada, 2007.

[12] K. Shirayanagi and M. Sweedler. Remarks on automatic algorithm stabilization. J. Symb. Comput., 26
(1998), 761-765.

[13] H.J. Stetter. Stabilization of polynomial systems solving with Gröbner bases. Proceedings of ISSAC’97
(Intern’l Symposium on Symbolic and Algebraic Computation), 117-124, ACM Press, 1997.

[14] H.J. Stetter. Numerical Polynomial Algebra. SIAM Publ., Philadelphia, 2004.

[15] H.J. Stetter. Approximate Gröbner bases – an impossible concept? Proceedings of SNC2005 (Symbolic-
Numeric Computation), 235-236, Xi’an, China, 2005.

[16] C. Traverso. Syzygies, and the stabilization of numerical Buchberger algorithm. Proceedings of LMCS2002
(Logic, Mathematics and Computer Science), 244-255, RISC-Linz, Austria, 2002.

[17] C. Traverso and A. Zanoni. Numerical stability and stabilization of Gröbner basis computation. Proceedings
of ISSAC2002 (Intern’l Symposium on Symbolic and Algebraic Computation), 262-269, ACM Press, 2002.

[18] V. Weispfenning. Gröbner bases for inexact input data. Proceedings of CASC2003 (Computer Algebra in
Scientific Computing), 403-411, Passau, Germany, 2003.

15

