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Abstract. Given a univariate polynomial over C, we discuss two issues, an
algebraic method for separating a factor of mutually close roots from the
polynomial, and a reasonable formula for the minimum root separation, by
assuming that the close roots form well-separated clusters. The technique we
use is very simple and effective; we move the origin near to the center of
a close-root cluster, then we are able to treat the other roots collectively,
reducing the problem to a very simple one. Following this idea, we present a
very simple and stable algebraic method for separating the close-root cluster,
derive two lower-bound formulas for the distance between two close roots,
and obtain a fairly simple lower bound of the minimum root separation of
polynomials over C.

1. Introduction

In this paper, assuming that a given univariate polynomial contains well-separated
clusters of close roots and that the coefficients of the given polynomial can be
computed to any required accuracy, 1) we present a new algebraic method for sep-
arating the close-root clusters, and 2) we investigate the minimum root separation.
Although these two issues are different, we discuss them in a single article because
we employ the same approach.

Our technique of attacking the above issues is very simple and effective; it was
devised in [TS00] first and used in [IS04] etc. If we move the origin near to the center
of a close-root cluster, the coefficients of the shifted polynomial show a peculiar
behavior. Using this behavior, we can treat the roots other than those in the cluster
collectively, and the problem is reduced to a much simpler one. Furthermore, with
this technique, we can usually obtain fairly accurate inequalities, where by accurate
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inequality we mean that the quantities in the left hand side (l.h.s.) and the right
hand side (r.h.s.) are not much different.

Computation of the roots of a univariate polynomial is a very old issue, but
it is still posing problems to researchers. In 1990’s, several semi-algebraic meth-
ods were proposed for factoring a univariate polynomial into two factors numeri-
cally hence approximately. Sakurai, Sugiura and Torii [SST92] proposed a method
which is based on an Hermite interpolation. Pan [Pan95, Pan96, Pan01] proposed
a method using Graeffe’s technique and revealed a very good computational com-
plexity of the method. Repeating this factorization recursively, we obtain linear
factors hence the roots. The algorithms seem to be quite effective for many poly-
nomials, but actually they become unstable if the given polynomial contains close
roots.

In this paper, we consider ill-conditioned polynomials which contain well-
separated clusters of close roots. In order to separate factors of close roots, Sasaki
and Noda [SN89] proposed an algorithm of approximate square-free decomposi-
tion, and Hribernig and Stetter [HS97] presented a similar method. These authors
used the polynomial remainder sequence (PRS) in their algorithms. In this paper,
assuming that the PRS has been computed by a suitable method, we present a
very simple and very stable algorithm for separating a factor containing only a
cluster of mutually close roots. The algorithm presented is crucially based on the
above-mentioned peculiar behavior of the shifted polynomial.

In computer algebra, there are several quantities for which the theoretical
lower or upper bounds differ from the actual values by many orders of magnitudes.
The minimum root separation is one of such quantities. Let A(x) be a given square-
free polynomial over C or Z, of degree n ≥ 3, having the roots α1, . . . , αn, where
αi 6= αj (∀i 6= j). The minimum root separation, or sep(A) in short, is defined to
be sep(A) = min{|αi − αj | | 1 ≤ i < j ≤ n}.

So far, many formulas for the lower bound of sep(A) were presented; see
[Mig92]. For polynomials over Z, Collins and Horowitz [CH74] derived the bound
sep(A) > 1

2 e−n/2 n−3n/2 ‖A‖−n
∞ , where ‖A‖p is the p-norm. A much better lower

bound is given by Mignotte [Mig92]: sep(A) > n−(n+2)/2D1/2 ‖A‖−(n−1)
2 , where

D denotes the discriminant of A(x). Unfortunately, these theoretical bounds are
extraordinary smaller than experimental values. In fact, after many experiments,
Collins [Col01] conjectured that sep(A) > n−n/4‖A‖−n/2

∞ . In deriving the theoret-
ical formulas, close roots are not considered so far. The minimum root separation
is determined by the closest roots, hence, we are absolutely necessary to take the
close roots into account.

In this paper, we will present a new approach to the minimum root separation.
The approach is again based on the peculiar behavior of the shifted polynomial.
It should be noted that the given polynomial must be treated as accurately as
required (by high precision arithmetic in several steps of algorithm). In fact, if the
coefficients are perturbed by relative magnitude ε, 0 < ε ¿ 1, then m multiple
or very close roots may be moved as large as O(ε1/m), hence the minimum root
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separation will also be changed largely. On the other hand, many authors took
an approach to compute multiple roots pretty accurately without using high pre-
cision arithmetic, see [Zen03] for example. In this approach, it is assumed (often
implicitly) that the given polynomial has multiple roots and no close roots; in
other words, a cluster of close roots of a polynomial with truncated coefficients
are regarded as multiple roots. Without such an assumption, we cannot compute
“multiple” roots by the fixed-precision arithmetic; in fact, the concept of multiple
roots can never hold for polynomials with inexact coefficients (we should replace
it by “approximately multiple” roots).

In 2, we review two theorems for distinguishing close roots distributed near
the origin from the other roots. We append two new theorems for the cluster of two
close roots. The reader will see our technique from the proofs of these theorems. In
3, we define a normalized PRS and explain characteristic behaviors of the sequence
when the given polynomial has close roots. Then, we review a method for finding
the locations of the clusters. Finally, we present a very simple and very stable
method for separating a factor containing only the close roots in a cluster. In 4,
we derive two lower bounds for the distance between two close roots and obtain
a fairly simple lower bound for the minimum root separation. In 5, we point out
open problems being concerned with this work.

2. Gap Theorems on the Roots

In this section, we review two theorems on a cluster of close roots of A(x):

A(x) = anxn + an−1x
n−1 + · · · + a0 = an(x − α1) · · · (x − αn). (2.1)

Furthermore, we append two new theorems for special cases. First, we show a
well-known lemma; see [Mig92] for the proof.

LEMMA 1. Let an and a0 be not zero and the roots be ordered as |α1| ≤ · · · ≤ |αn|.
Then, |α1| and |αn| are bounded as follows.

|a0|
|a0| + max{|a1|, · · · , |an|}

≤ |α1| ≤ |αn| ≤
|an| + max{|an−1|, · · · , |a1|}

|an|
. (2.2)

By using this lemma, the following theorems were proved; see [TS00] or [ST02]
for the proof of Theorem 1 and [IS04] for the proof of Theorem 2.

THEOREM 1 (Sasaki and Terui). Let Ā(x) ∈ C[x] be

Ā(x) = ānxn + · · · + ām+1x
m+1 + 1 · xm + ēm−1x

m−1 + · · · + ē0, (2.3)

where the coefficients satisfy{
max{|ān|, · · · , |ām+1|} = 1,

ē
def= max{|ēm−1|1/1, |ēm−2|1/2, · · · , |ē0|1/m} ¿ 1.

(2.4)
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If ē < 1/9 then Ā(x) has m small roots inside a disc D̄in of radius R̄in and other
n−m roots outside a disc D̄out of radius R̄out, located at the origin, where

R̄in(out) =
(1 + 3ē) − (+)

√
(1 + 3ē)2 − 16ē

4
. (2.5)

COROLLARY 1. Each root in the close-root cluster located at the origin, of Ā(x) is
separated from other n−m roots at least by R̄out−R̄in = 1

2

√
(1+3ē)2 − 16ē .

THEOREM 2 (Inaba and Sasaki). Let m = 1 in (2.3) and put ê = |ē0|. If ê <

1/(3+2
√

2) then Ā(x) has one small root inside a disc D̂in of radius R̂in and other
n−1 roots outside a disc D̂out of radius R̂out, located at the origin, where

R̂in(out) =
(1 + ê) − (+)

√
(1 + ê)2 − 8ê

4
. (2.6)

COROLLARY 2. For m = 1, the smallest root around the origin of Ā(x) is separated
from other n−1 roots at least by R̂out−R̂in = 1

2

√
(1+ê)2 − 8ê .

R̄in and R̄out (and R̂in and R̂out, too) are two roots of a quadratic polyno-
mial. R̂in and R̂out were obtained first by Wang and Han in [WH90], in a study
of Newton’s method for computing a root of univariate polynomial. R̄in was ob-
tained also by Yakoubsohn [Yak00] by a different approach, but he did not obtain
R̄out. How accurately the formula (2.5) bounds the actual roots was investigated
numerically by Sasaki and Terui [ST02], which revealed that the formula bounds
the actual roots fairly well.

2.1. Special two cases of m = 2
In this paper, we are interested in the case that only two close roots form a cluster.
In this subsection, we specialize the above theorems for the case of m = 2.

We first consider the case that the origin is very close to one of the two close
roots. If we perform a scale transformation so that the cluster size becomes O(1),
the polynomial A(x) will be transformed to the following regularized form.

Ā2(x) = āndn−2xn + · · · + ā3dx3 + ā2x
2 + x + ē0,

0 < d ¿ 1, 0 < |ē0| ¿ 1,

max{|ān|, · · · , |ā3|} = |ā2| = 1.

(2.7)

We can transform Ā(x) in (2.3), with m = 2, to the polynomial Ā2(x) in (2.7), as
follows. If |ē1|2 À |ē0| then put Ā2(x) = Ā(ē1x)/ē2

1. Otherwise, compute Ā′(x) =
Ā(x+α′) def= a′

nxn + · · ·+a′
2x

2 +a′
1x+a′

0, with α′ = (−ē1 +
√

ē2
1−4ē0 )/2, and put

Ā2(x) = Ā′(a′
1x/a′

2) · a′
2/(a′

1)
2. Note that |α′| ¿ 1 because max{|ē1|, |ē0|1/2} ¿ 1.

Ā2(x) has one small root near the origin, let it be γ̂. Let γ̆ be a root of Ā2(x),
other than γ̂, then we have |γ̆| >∼ 0.5. For Ā2(x), we can strengthen Theorem 2 as
follows.
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THEOREM 3. Put ê = |ē0| for simplicity. If ê < 1/[(2+d) + 2
√

1+d] then Ā2(x)
has one small root inside a disc D̂in of radius R̂in and other n−1 roots outside a
disc D̂out of radius R̂out, located at the origin, where

R̂in(out) =
(1 + dê) − (+)

√
(1 + dê)2 − 4(1 + d)ê

2(1 + d)
. (2.8)

COROLLARY 3. The smallest root γ̂ around the origin of Ā2(x) is separated from
other n−1 roots at least by

√
(1 + dê)2 − 4(1 + d)ê /(1 + d).

Proof Equality Ā2(γ̂) = 0 gives us γ̂ ·(āndn−2γ̂n−1 + · · ·+ ā3dγ̂2 + ā2γ̂ +1) =
−ē0. Since |γ̂| ¿ 1, we obtain

|γ̂| = ê / |1 + ā2γ̂ + ā3dγ̂2 · · · + āndn−2γ̂n−1|
≤ ê / {1 − |γ̂| − d|γ̂|2 − · · · − dn−2|γ̂|n−1}
< ê / {1 − |γ̂|/(1 − d|γ̂|)}

=⇒ (1 + d)|γ̂|2 − (1 + dê)|γ̂| + ê > 0.

The last inequality holds only if (1+dê)2−4(1+d)ê > 0, or ê < 1/[(2+d)+2
√

1+d].
With this condition, the above last inequality gives us the bound R̂in for |γ̂|.

Next, consider d2Ā2(x/d) def= Ã2(x) = ānxn + · · ·+ ā2x
2 + dx + d2ē0. Ã2(x)

has a root dγ̆, and we put γ = dγ̆ for simplicity. Dividing Ã2(γ) = 0 by γ, we obtain
equality ānγn−1+· · ·+ā2γ+ā1 = 0, where ā1 = d(1+dē0/γ). We see |ā1| ' d ¿ 1
because |γ̆| >∼ 0.5. We regard this equality as an equation in γ, of degree n−1 with
the constant term ā1, and apply formula (2.2) to it. (We can state this situation
as follows. Consider a set of polynomials {ānzn−1+· · ·+ā2z+ā1

∣∣ |ā1| ≤ ā}, where
ā is so chosen that the set contains a polynomial having the root γ. Since ā1 is
a number, we can apply formula (2.2) to every polynomial in the set.) Then, we
obtain

|γ| ≥ 1
1 + 1 / |ā1|

≥ 1
1 + 1/(d − d2ê/|γ|)

=⇒ (1 + d)|γ|2 − d(1 + dê)|γ| + d2ê ≥ 0
or (1 + d)|γ̆|2 − (1 + dê)|γ̆| + ê ≥ 0.

We have obtained the same polynomial for both |γ̂| and |γ̆|. Since γ̆ is not the
smallest root, we obtain the bound R̂out for |γ̆|. The γ̂ is separated from other
n−1 roots by at least R̂out−R̂in, which proves the corollary. ¤

Next, we consider the case that the origin is near to the center of close-root
cluster. That is, instead of Ā2(x) in (2.7), we consider Ā2(x) regularized as follows.{

Ā2(x) = ānxn + · · · + ā3x
3 + x2 + ē1x + ē0, |ē1| < |ē0|,

max{|ān|, · · · , |ā3|} = 1, ē
def= max{|ē1|, |ē0|1/2} ¿ 1.

(2.9)

We can transform Ā(x) in (2.3), with m = 2, to the polynomial Ā2(x) in (2.9), as
follows. Compute Ā′(x) = Ā(x−ē1/2) def= a′

nxn + · · · + a′
2x

2 + a′
1x + a′

0, and put
Ā2(x) = Ā′(x/η)·η2/a′

2, where η = max{|a′
3/a′

2|1/1, |a′
4/a′

2|1/2, · · · , |a′
n/a′

2|1/(n−2)}.
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Ā2(x) has two small roots around the origin, let one of them be γ̂, and any
other root γ̆ of Ā2(x) is such that γ̆ >∼ 0.5.

THEOREM 4. Let a polynomial P2(r) be defined as

P2(r) = 2r3 − (1 + |ē1|)r2 + (|ē1| − |ē0|)r + |ē0|. (2.10)

If ē1 and ē0 in (2.9) are such that P2(r) has two real positive roots R̄in and R̄out,
with R̄in < R̄out, then Ā2(x) has two small roots inside a disc D̄in of radius R̄in and
n−2 roots outside a disc D̄out of radius R̄out, located at the origin. The conditions
for P2(r) having two real positive roots are{

Condition 1 : |ē1| < |ē0|,
Condition 2 : R < 0,

(2.11)

where R = |ē1|4 − |ē1|3(6− 2|ē0|) + |ē1|2(1− 4|ē0|+ |ē0|2)− |ē1|(26|ē0| − 14|ē0|) +
(4|ē0| − 71|ē0|2 + 8|ē1|3).

COROLLARY 4. The two small roots around the origin, of Ā2(x) are separated from
other n − 2 roots at least by

R̄out − R̄in. (2.12)

Proof Ā2(x) has a root γ̆. Denoting γ̆ by γ and dividing Ā2(γ) by γ2, we
obtain 0 = ānγn−2 + · · ·+ ā3γ + ā2, where ā2 = 1 + ē1/γ̆ + ē0/γ̆2. We see |ā2| ' 1
because |γ̆| >∼ 0.5. We regard the above r.h.s. expression as a polynomial in γ of
degree n−2 with the constant term ā2, and apply formula (2.2) to it. Then, we
obtain the following inequality for γ̆.

|γ̆| ≥ 1
1 + 1 / |ā2|

≥ 1
1 + 1 / (1 − |ē1|/|γ̆| − |ē0|/|γ̆|2)

=⇒ 2|γ̆|3 − (1 + |ē1|)|γ̆|2 + (|ē1| − |ē0|)|γ̆| + |ē0| ≥ 0.

Next, consider Ā2(ex)/e2 def= Ã2(x) = ānen−2xn + · · · + ā3ex
3 + x2 +

(ē1/e)x + (ē0/e2), where e = ē. Ã2(x) has a root γ̂/e. Putting γ = γ̂/e, we
have γ2 · {ān(eγ)n−2 + · · · + ā3(eγ) + 1} = −(ē1/e)γ − (ē0/e2). Since we have
e|γ| = |γ̂| ¿ 1, we obtain the following inequality for γ̂.

(|ē1|/e)|γ| + (|ē0|/e2) ≥ |γ|2 · (1 − |eγ| − · · · − |eγ|n−2)
> |γ|2 · {1 − e|γ|/(1 − e|γ|)}

=⇒ 2e3|γ|3 − (1 + |ē1|)e2|γ|2 + (|ē1| − |ē0|)e|γ| + |ē0| > 0
or 2|γ̂|3 − (1 + |ē1|)|γ̂|2 + (|ē1| − |ē0|)|γ̂| + |ē0| > 0.

We have obtained the same polynomial P2(r) for both γ̂ and γ̆. Since P2(0) =
|ē0| > 0, P2(r) has at least one negative root. Since |γ̂| and |γ̆| must be two roots
of P2(r), we have conditions in (2.11). ¤
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Condition 2 in (2.11) is complicated to obtain the general solution, so we
estimate the values of ē and R̄in for the following three cases.

Case 1 : |ē1| = 0 and |ē0| = ē2 =⇒ ē ≈ 0.23812, R̄in ≈ 0.3596,
Case 2 : 5|ē1| = |ē0| = ē2 =⇒ ē ≈ 0.23002, R̄in ≈ 0.3566,
Case 3 : 2|ē1| = |ē0| = ē2 =⇒ ē ≈ 0.21938, R̄in ≈ 0.3527,

The value of R̄in in Theorem 4 is much larger that those in Theorems 1 and
2. However, Theorem 4 is less useful practically than Theorems 1 and 2, because
the first condition in (2.11) is quite restrictive.

3. Separating Clusters of Close Roots

In this section, by quo(A,B), rem(A,B) and lc(A), we denote the quotient and
remainder of A divided by B and the leading coefficient of A, respectively. By ‖P‖
we denote the infinity norm of polynomial P .

First of all, we note that the theorems in 2 can be generalized directly to
polynomials with inexact coefficients, so long as the error bound of each coefficient
is known. Here, we state the generalization for Theorem 1 only.

PROPOSITION 1. Let the coefficients ān, . . . , ām+1, ēm−1, . . . , ē0 of Ā(x) in Theorem
1 contain small errors which are bounded respectively by εn, . . . , εm+1, εm−1, . . . , ε0.
Theorem 1 is valid if we regularize Ā(x) as max{|ān|+εn, · · · , |ām+1|+εm+1} = 1
and define ē as ē = max{(|ēm−1|+εm−1)1/1, (|ēm−2|+εm−2)1/2, · · · , (|ē0|+ε0)1/m}.

We assume that A(x) is monic and regularized as

an = max{|an−1|, · · · , |a0|} = 1. (3.1)

With this regularization, Lemma 1 tells us that any root α of A(x) is bounded
as |α| ≤ 2. Therefore, if two different roots αi and αj of A(x) are such that
|αi − αj | ¿ 1/n then we can say that αi and αj are mutually close roots of
closeness |αi − αj |. We consider the case that close roots of A(x) form clusters
of different sizes O(δ1), . . . , O(δτ ), with 1/n À δ1 À · · · À δτ (τ may be 1), and
that each cluster of size O(δi) is separated from other roots by distance À δi. Let
the number of close roots of closeness ≤ O(δi) be mi (i = 1, . . . , τ), and the close
roots of closeness O(δi) be distributed among `i clusters (i = 1, . . . , τ). A bigger
cluster may contain several smaller clusters. We define the center of the cluster to
be the average value of the close roots in the cluster.

3.1. Normalized PRS (polynomial remainder sequence)

Putting P1 = A(x), P2 = 1
n dA/dx, S1 = T2 = 1 and S2 = T1 = 0, we gen-

erate a PRS (P1, P2, P3, P4, · · · ) and cofactor sequences (S1, S2, S3, S4, · · · ) and
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(T1, T2, T3, T4, · · · ), by the following formulas.
qj := quo(Pj−1, Pj),

Pj+1 := (Pj−1 − qjPj)/wj ,

Sj+1 := (Sj−1 − qjSj)/wj ,

Tj+1 := (Tj−1 − qjTj)/wj ,

(j = 2, 3, . . . ), (3.2)

where wj is a number to be chosen to satisfy

max{lc(Sj+1), lc(Tj+1)} = 1 (j = 2, 3, . . . ). (3.3)

We call the PRS generated by the formulas in (3.2) normalized PRS.

Remark 1 We call a quantity Q shift-invariant if Q = Q′, where Q′ is the same
quantity as Q but computed after shifting the origin arbitrarily. The l.h.s. quantity
in (3.3) is shift-invariant, hence lc(Pj+1) (j = 2, 3, . . . ) are shift-invariant. In [SS97]
and [Sas03], the normalization formula max{‖Sj+1‖, ‖Tj+1‖} = 1 is used. If A(x)
is regularized, the PRS’s normalized by both formulas are almost the same. ¤

Let indices k1, k2, . . . , kτ be such that

deg(Pki) = mi − `i (i = 1, 2, . . . , τ). (3.4)

deg(Pki) is equal to the number of roots of dA/dx, of closeness ≤ O(δi), distributed
among `i clusters, and Pki is an approximate common divisor of A(x) and dA/dx.

The normalized PRS behaves as follows, see [SS89] and [Sas03].
1): We have ‖Pj‖ = O(δ0

1) for j ≤ k1 (i.e., ‖Pj‖ does not decrease much until
the remainder becomes an approximate GCD of A and dA/dx).

2): For each i = 1, . . . , τ , we have ‖Pki+1‖/‖Pki
‖ = O(δ2

i ) (i.e., Pki
is an

approximate common divisor of A and dA/dx, of tolerance O(δ2
i )).

3): If A(x) contains only one cluster of size O(δ1), we call the PRS single-cluster

type. For j > k1, the PRS of single-cluster type behaves as ‖Pk1+j‖ = O(δ2j
1 )

for j = 1, 2, . . . (until we encounter smaller clusters).
4): If A(x) contains two or more clusters of size O(δ1), we call the PRS

multiple-cluster type. For j > k1, the PRS of multiple-cluster type behaves
as ‖Pk1+j+1‖/‖Pk1+1‖ = O(δ0

1) for 1 ≤ j < `1, ‖Pk1+`1+1‖/‖Pk1+1‖ = O(δ2
1),

and so on. That is, ` successive remainder computations strip ` close roots
from the ` clusters, one root from each cluster, without changing the norm of
remainders much until the ` close roots are stripped. The PRS may become
of single-cluster type after being stripped off all the close roots of closeness
O(δ1).

It should be emphasized that single- and multiple-cluster types are clearly distin-
guished from each other by the behavior of normalized PRS.

Remark 2 From the viewpoint of elimination, the elements of PRS are unique up
to constant factors. From the viewpoint of computation, however, the accuracy
of the result depends very much on the algorithm used; in fact, the conventional
Euclidean algorithm causes large cancellations errors if small leading coefficients



Separating Close-root Clusters and Minimum Root Separation 157

appear during the computation. This instability can be removed largely (but not al-
ways) by performing the elimination carefully. For example, Ohsako et al. [OST97]
utilized the Givens transformation which works nicely for removing the cancella-
tion errors. One may compute an approximate GCD of P1(x) and P2(x) by a stable
method such as proposed by Corless et al. [CWZ02]. ¤

3.2. Finding the location of a cluster

Finding the location of clusters of close roots has already been discussed in [SN89]
and [HS97]. Here, we briefly survey the method.

We first consider the single-cluster case. Assume that the normalized PRS for
A(x) is of single-cluster type (hence, `1 = 1), and put δ1 = δ, k1 = k and m1 = m.
Let the mutually close roots in the cluster be α1, . . . , αm and αc the cluster center:
αc = (α1+· · ·+αm)/m. We express Pk(x) and define α′

c as{
Pk(x) = pm−1x

m−1 + pm−2x
m−2 + · · · + p0,

α′
c

def= −1
m−1 pm−2/pm−1.

(3.5)

We will show in 3.2 that |α′
c − αc| = O(δ2), hence α′

c is very close to the cluster
center αc. Furthermore, we can know the cluster size δ approximately by the ratio
‖Pk+1‖/‖Pk‖ = O(δ2).

The fact ‖Pk+1‖/‖Pk‖ = O(δ2) shows that the above mentioned method will
work quite well for clusters of small sizes such as δ <∼ 10−3 or 10−4. So, in the
example below, we check the method by a cluster of very large size ∼ 10−1.

Example 1 (single-cluster type) Let A(x) be as follows.

A = (x2 − 1) (x − 0.30) (x − 0.31) (x − 0.35) (x2 − 0.60x + 0.0925).

A(x) has five close roots of closeness ∼ 0.05 at x ∼ 0.3 (αc = 0.312), and the
normalized PRS shows that ‖P5‖/‖P4‖ ∼ 0.0021 ≈ (0.05)2. Determining α′

c by
P4 as described above, we obtain α′

c = 0.31139 · · · . Shifting the origin to α′
c, we

obtain A′(x) def= A(x+α′
c) and P ′

4
def= P4(x+α′

c) as follows.

A′(x) = x7 + 0.61977 · · ·x6 − 0.90334 · · ·x5 + 0.00300 · · ·x4 − 0.00010 · · ·x3

+ 0.70895 · · · × 10−4x2 + 0.11466 × 10−5x − 0.14589 · · · × 10−8,

P ′
4 = −0.15544 · · ·x4 − 1.0000 · · · × 10−4x2 + · · · + 4.0545 · · · × 10−8.

Observe that the x4-term of A′(x) is abnormally small (∼ (0.05)2) and that xi-
terms (i ≤ 3) of A′(x) decrease steadily as i decreases. ¤

We next consider the case of multiple clusters. Assume that A(x) contains
` clusters of close roots of closeness O(δ), with ` > 1, then A(x) must be of the
following form.

A(x) = Ã(x) (x − α′
1)

µ1 · · · (x − α′
`)

µ`C(x) + O(δ2), µ1 ≥ · · · ≥ µ`. (3.6)

Here, α′
i is an approximate center of the ith cluster (i=1, . . . , `), Ã(x) represents

the factor of all the non-close roots, and C(x) represents the factor of close roots
of smaller closenesses.
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Given A(x), we generate the following normalized PRS for i=1 ⇒ 2 ⇒ · · · ⇒
µ1 successively, where P (0) = A(x). (P

(i)
1 = P (i−1), P

(i)
2 = 1

deg(P (i−1))
dP (i−1)/dx, · · · , P

(i)
ki

def= P (i), P
(i)
last ),

‖P (i)
j ‖ = O(δ0) (j ≤ ki), ‖P (i)

last‖ ≤ O(δ2).
(3.7)

Note that P (1), P (2), . . . are determined by large decreases of ‖P (1)
last‖, ‖P

(2)
last‖, · · · .

Then, for index i < µ`, we have P (i) ∝ (x−α′
1)

µ1−i · · · (x−α′
`)

µ`−iC(x) + O(δ2).
For index µ` ≤ i ≤ µ1, we have P (i) ∝ (x−α′

1)
µ1−i · · · (x−α′

r)
µr−iC(x) + O(δ2),

where 1 < r < `. Therefore, we can obtain square-free factors of the product
(x−α′

1)
µ1 · · · (x−α′

`)
µ` by computing the quotients of P (i−1) by P (i) (1 ≤ i ≤ µ1)

successively. For example, if µ1 = · · · = µr > µr+1 = · · · = µ` we will obtain the
following polynomials.

P (µ`−1) ' C(x) · [(x−α′
1) · · · (x−α′

r)]
µ1−µ`+1 · [(x−α′

r+1) · · · (x − α′
`)],

P (µ1−1) ' C(x) · [(x−α′
1) · · · (x−α′

r)],
P (µ1) ' C(x).

Thus, we have quo(P (µ1−1), P (µ1)) ≈ (x−α′
1) · · · (x−α′

r) and quo(P (µ`−1), P (µ`)) ≈
(x−α′

1) · · · (x−α′
`). Finally, computing the roots of approximately square-free factors

(x−α′
1) · · · (x−α′

r) and (x−α′
r+1) · · · (x−α′

`), we can find the approximate locations
of the clusters.

Remark 3 Separating the approximate factor (x− α′
1)

µ1 · · · (x− α′
`)

µ` in (3.6) to
factors of the same “multiplicity” is the most unstable step of our method; this
point was discussed to some extent in [SN89]. If close-root clusters are closer, the
separation becomes more unstable. This fact forces us to assume that the close-
root clusters are well separated each other. This instability will be reduced much
if we adopt such “least square algorithms” as were used in [Zen03]. ¤

3.3. A basic problem on PRS

Let B(x) be a polynomial regularized as A(x) in (3.1). If A(x) and B(x) have
mutually close roots of closeness O(δ), the normalized PRS of P1 = A(x) and
P2 = B(x) gives us ‖Pk1+1‖ = O(δ) in general. In the case of B(x) = 1

deg(A) dA/dx,
however, we have ‖Pk1+1‖ = O(δ2). This means that the normalized PRS gives us
fairly accurate information on the close-root clusters. However, we have currently
no answer to the following basic problem.

Problem: By using the PRS, determine fairly accurate upper bounds of the
size and the location of the close-root cluster of A(x).
Determining fairly accurate a priori upper bounds of δ and αc is not easy. We

can, however, determine an a posteriori upper bound of δ so long as δ is small. We
shift the origin to α′

c, an approximate center of the close-root cluster, determined
in 3.2. We express A(x+α′

c) as follows.

A(x + α′
c)

def= A′(x) = a′
nxn + · · · + a′

mxm + · · · + a′
0. (3.8)
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Then, we have (see [Sas03] for the proof; see also Example 1)

|a′
m−1/a′

m| = O(δ2), |a′
m−j/a′

m| = O(δj) (j = 2, 3, . . . ). (3.9)

Note that the coefficients of xm−2-, xm−3-, . . . , x0-terms of A′(x) decrease steadily,
hence we will be able to apply Theorem 1 to A′(x).

PROPOSITION 2. Let 1/d = max{|a′
m+1/a′

m|, |a′
m+2/a′

m|1/2, |a′
n/a′

m|1/(n−m)}, and
put ē = e/d. If ē < 1/9 then the cluster size δ is bounded as δ < R̄ind, where R̄in

is defined in (2.5). ¤
As for α′

c, the problem is much more difficult. So, we give only an order
estimation, which is simple. Since the leading coefficients of elements of the nor-
malized PRS are shift-invariant, we can consider the PRS by shifting the origin to
a favorite point. Thus, moving the origin to the cluster center αc, we express A(x)
and Pk as{

A(x) = a′′
n(x − αc)n + · · · + a′′

m(x − αc)m + · · · + a′′
0 ,

Pk = p′′m−1(x − αc)m−1 + p′′m−2(x − αc)m−2 + + · · · + p′′0 .
(3.10)

PROPOSITION 3. We have |α′
c − αc| = O(δ2).

Proof We note that α′
c − αc = −1

m−1 p′′m−2/p′′m−1. Since αc is the center of
roots α1, . . . , αm, we have a′′

m = O(δ0) and a′′
m−1 = O(δ2). As shown in [Sas03]

by using the subresultant, this fact gives us p′′m−1 = O(δ0) and p′′m−2 = O(δ2),
proving the proposition. ¤
3.4. Separating the factor of a close-root cluster

In this subsection, we consider to separate a factor of A(x) to arbitrary accuracy,
where the factor contains only m mutually close roots of closeness ≤ O(δ), with
δ = δ1. (Applying the separation algorithm recursively, we can separate any close-
root cluster of size O(δi)).

We already know α′
c, an approximate cluster center. First, we move the origin

to α′
c, and compute A′(x) = A(x+α′

c) given in (3.8). Next, we compute the following
number e.

e = max{|a′
m−1/a′

m|, |a′
m−2/a′

m|1/2, · · · , |a′
0/a′

m|1/m}. (3.11)

Using e, we transform A′(x) to the following regularized form:{
Ā(x) def= A′(ex)/a′

mem = ānxn + · · · + 1 · xm + ām−1x
m−1 + · · · + ā0,

d
def= max{|ān|1/(n−m), · · · , |ām+1|1/1}, max{|ām−1|, · · · , |ā0|} = 1.

(3.12)
By assumptions, e must be a small number of magnitude O(δ), and so is d.

We want to factor Ā(x) as Ā(x) = H(x)C(x), where C(x) = xm+cm−1x
m−1+

· · ·+c0. H(x) can be expressed as H(x) = 1+d h1x+d2h2x
2+· · ·+dn−mhn−mxn−m,

where d is given in (3.12) and max{|h1|, |h2|, · · · , |hn−m|} ≈ 1.
Since we assumed d to be small enough, the lower degree terms xm+ām−1x

m−1+
· · ·+ ā0 of Ā(x) is approximately equal to C(x). Therefore, we can determine H(x)
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and C(x) iteratively as follows. As initial approximations, put H(x) ≈ H(0) = 1
and C(x) ≈ C(0) = xm+ām−1x

m−1+· · ·+ā0. Expressing Ā(x) as Ā(x) = [1+∆H ]·
[C(0) + ∆C ], where ∆H = O(d), ∆C = O(d), deg(∆H) < n−m and deg(∆C) < m,
we have Ā(x)−C(0) = ∆HC(0) + ∆C + O(d2). Thus, ∆H and ∆C up to O(d) are
equal to the quotient and the remainder, respectively, of Ā(x)−C(0) divided by C(0):
∆H = quo(Ā−C(0), C(0)) + O(d2), ∆C = rem(Ā−C(0), C(0)) + O(d2). Assume
that we have determined H(x) and C(x) to order dk as H(x) = H(k) + O(dk+1)
and C(x) = C(k) + O(dk+1). We shall determine H(k+1) and C(k+1) so as to
satisfy Ā(x) = H(k+1)C(k+1) + O(dk+2). Putting H(k+1) = H(k) + ∆H and
C(k+1) = C(k) + ∆C , with deg(∆H) < n−m and deg(∆C) < m, we have
Ā−H(k)C(k) = ∆H C(0) + ∆C + O(dk+2) (note that deg(Ā−H(k)C(k)) ≤ n−1).
Hence, we can determine H(k+1) and C(k+1) by the following formulas.{

H(k+1) = H(k) + quo(Ā − H(k)C(k), C(0)),

C(k+1) = C(k) + rem(Ā − H(k)C(k), C(0)).
(3.13)

Remark 4 It should be emphasized that, since ‖C(0)‖ = 1 = lc(C(0)), the algo-
rithm is quite stable; if d is smaller then the algorithm is more stable and it con-
verges faster. Note that, in the step of computing H(k+1) and C(k+1), we have only
to compute A−H(k)C(k) to order dk+1: we may handle only xm+k-, xm+k−1-, . . . , x0-
terms of Ā − H(k)C(k). Hence, the above algorithm is pretty efficient. The above
algorithm is of linear convergence. If we determine ∆H and ∆C to satisfy Ā −
H(k)C(k) = ∆H C(k) +∆C H(k) +O(d2k+1), then we get an algorithm of quadratic
convergence. ¤

Remark 5 If a coefficient of a polynomial containing m multiple roots is perturbed
by a small relative magnitude ε, then the m multiple roots are split into m close
roots which are distributed within a circle of radius ≤ O(ε1/m). Therefore, in
order to compute the roots of C(x) to accuracy 2−p, with p a positive integer,
we must compute C(x) to accuracy 2−mp at least (if a close-root cluster of C(x)
contains smaller close-root clusters, we must compute C(x) much more accurately).
This means that we must compute A′(x) = A(x+α′

c) to accuracy 2−mp at least,
which is quite time-consuming. However, since the xk-term of Ā(x), k > m, is
of magnitude O(dn−m−k), we have only to compute its coefficient to accuracy
O(2−mp−g/dn−m−k), with g the number of guard bits. ¤

Example 2 We consider the polynomial in Example 1.
We already know that α′

c = 0.31139 · · · . Shifting the origin to α′
c, we obtain

the polynomial A′(x) given in Example 1. From the coefficients a′
5, a

′
4, . . . , a

′
0, we

obtain e = 0.042814 · · · , which gives us Ā(x) as follows.{
Ā(x) = 1 · C(0) + (−0.0020291 · · ·x2 − 0.029374x) · x5,

C(0) = x5 − 0.093589 · · ·x4 + · · · + x2 + · · · − 0.011226 · · · .
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Performing the above factor-separation algorithm, we find that the norm of differ-
ence ∆(k) def= Ā−H(k)C(k) decreases as follows.
‖∆(0)‖ ≈ 2.94 × 10−2 ⇒ ‖∆(1)‖ ≈ 8.00 × 10−4 ⇒ ‖∆(2)‖ ≈ 4.04 × 10−5

· · · ⇒ ‖∆(8)‖ ≈ 4.00 × 10−13 ⇒ ‖∆(9)‖ ≈ 1.60 × 10−14.

We note that, since the cluster size is pretty large (δ ∼ 10−1) hence the separation
of the cluster is not easy for many separation algorithms, our algorithm works
quite well and stably. ¤

Hribernig and Stetter [HS97] constructed an algorithm for separating a close-
root cluster, and the algorithm has some similarity to ours. Their algorithm is,
however, complicated compared with our algorithm, because they did not utilize
the fact that the coefficients |a′

m−1|, |a′
m−2|, · · · , |a′

0| of A′(x+α′
c) decrease steadily

as expressed in (3.9).

4. On the Minimum Root Separation in a Cluster

Let C(x) be a factor of Ā(x), corresponding to the smallest close root cluster of
size O(δτ ), with deg(C) = m ≥ 3. The factor C(x) is obtained by a repetition of
cluster separations and scale transformations, and we can obtain sep(A) if sep(C)
is determined. After regularizing C(x) as in 3.4, C(x) will contain no close-root
cluster which can be separated by Theorem 1. In order to derive formulas on
sep(C), however, we consider the case that C(x) has only two close roots. We
also assume that we have computed α′

c, an approximate cluster center, by the
normalized PRS of C(x) and dC/dx, and the origin has been shifted to α′

c. We
denote the roots of C(x) by γ1, . . . , γm, among which γ1 and γ2 are the close roots
around the origin.

4.1. A lower bound for |γ1 − γ2|
Under some conditions, we can bound |γ1−γ2| by applying Theorem 1 to C(x)
(we may use Theorem 4 but the statement becomes complicated). We regularize
C(x) and define e as follows.{

C(x) = cmxm + · · · + c3x
3 + x2 + c1x + c0,

max{|cm|, · · · , |c3|} = 1, e
def= max{|c1|, |c0|1/2}.

(4.1)

THEOREM 5. Let R̄in be the same as that in Theorem 1, with ē replaced by e. If
e < 1/9 and |c2

1 − 4c0|/4|c0| > R̄in/(1 − R̄in) then the following inequality holds.

|γ1 − γ2| >

√
|c2

1−4c0| − 4|c0| R̄in/(1−R̄in) × (1 − 2R̄in) (1 − R̄in)
1 + (|c1|/2) (1 − R̄in)2/(1 − 2R̄in)3

. (4.2)

Proof Put C(x) = L(x)x2 + c1x + c0, with L(x) = cmxm−2 + · · · + c3x + 1,
and let γ ∈ {γ1, γ2}. We regard γ as a root of L(γ)x2 + c1x + c0, then we obtain

(γ1 − γ2) −
c1

2
· L(γ1) − L(γ2)

L(γ1)L(γ2)
=

√
c2
1 − 4c0L(γ1)
2L(γ1)

+

√
c2
1 − 4c0L(γ2)
2L(γ2)

.
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Since L(γ) = 1 + c3γ + · · · + cmγm−2 and |γ| < R̄in < 1/3, we can bound |L(γ)|
as

1 − R̄in/(1−R̄in) < |L(γ)| < 1 + R̄in/(1−R̄in). (4.3)

We bound |L(γ1)−L(γ2)| as |L(γ1)−L(γ2)| = |γ1−γ2|·|c3+c4(γ1+γ2)+c5(γ2
1+γ1γ2+

γ2
2)+ · · · | < |γ1−γ2| · (1+2|γ|+4|γ|2+· · · ) = |γ1−γ2|/(1−2|γ|) < |γ1−γ2|/(1−2R̄in).

Putting R(γ) =
√

c2
1 − 4c0L(γ) /2L(γ), we search for a lower bound of

|R(γ1) + R(γ2)|. Although the roots γ1 and γ2 are mutually related in that they
are two different roots of C(x), we neglect this fact and change L(γ1) and L(γ2)
arbitrarily under the restriction (4.3). Then, the numerator of |R(γ)| is bounded
as √

|c2
1−4c0L(γ)| >

√
|c2

1−4c0| − 4|c0| R̄in/(1−R̄in) .

Noting that L(γ) is a complex number, we bound |1/L(γ1) + 1/L(γ2)| as∣∣∣ 1
L(γ1)

+
1

L(γ2)

∣∣∣ =
|L(γ1)+L(γ2)|
|L(γ1)L(γ2)|

> 2 (1−2R̄in) (1−R̄in).

Summarizing the above bounds, we obtain the theorem. ¤

4.2. Basic lemmas

The formula in Theorem 5 is rather complicated, so we search for another formula.
In this and the next subsections, we regularize C(x) as A(x) in (3.1) and define d
as follows. 

C(x) = xm + cm−1x
m−1 + · · · + c2x

2 + c1x + c0,

max{|cm−1|, · · · , |c2|} = 1 À |c1|, |c0|,
1/d = max{|c3/c2|, |c4/c2|1/2, · · · , |1/c2|1/(m−2)}.

(4.4)

Put σ = (γ1+γ2)/2 and γ̂ = (γ1−γ2)/2, and define H(x) and η as follows.
C(x) = H(x) · (x−σ−γ̂) (x−σ+γ̂),
H(x) = xm−2 + hm−3x

m−3 + · · · + h1x + h0,

1/η = max{|h1/h0|, |h2/h0|1/2, · · · , |1/h0|1/(m−2)}.
(4.5)

Expressing c0, c1, c2, · · · by h0, h1, h2, · · · , we obtain c0 = (σ2−γ̂2)h0, c1 =
(σ2−γ̂2)h1 −2σh0, cj = (σ2−γ̂2)hj −2σhj−1 +hj−2 (j ≥ 2). By these, we obtain

c1

c0
= − 2σ

σ2−γ̂2
+

h1

h0
,

c2

c0
=

1
σ2−γ̂2

− 2σ

σ2−γ̂2

h1

h0
+

h2

h0
.

Solving σ and γ̂ from these equations, we obtain

2σ = γ1 + γ2 = −C1

C2
, 2γ̂ = γ1 − γ2 =

√
C2

1 − 4C2

C2
, (4.6)

where

C1 =
c1

c0
− h1

h0
, C2 =

c2

c0
− c1

c0

h1

h0
+

h2
1

h2
0

− h2

h0
. (4.7)
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The roots of C2x
2 + C1x + 1 are γ1 and γ2. In fact, equalities in (4.6) give us

C2 =
1

σ2 − γ̂2
=

1
γ1γ2

, C1 =
−2σ

σ2 − γ̂2
=

−γ1−γ2

γ1γ2
. (4.8)

The above relation on cj and hj (j ≥ 2) also gives us

cj

c2
=

(hj−2/h0) − 2σ(hj−1/h0) + (σ2−γ̂2)(hj/h0)
1 − 2σ(h1/h0) + (σ2−γ̂2)(h2/h0)

(j ≥ 3). (4.9)

LEMMA 2. The following inequalities hold for |C1|, |C2| and |C2
1 − 4C2|/|C2|2.

|c1|
|c0|

− 1
η

≤ |C1| ≤ |c1|
|c0|

+
1
η
,

|c2|
|c0|

− 1
η

|c1|
|c0|

− 2
η2

≤ |C2| ≤ |c2|
|c0|

+
1
η

|c1|
|c0|

+
2
η2

,

|c2
1−4c2c0| − 2|c1c0|/η − 7|c0|2/η2

(|c2| + |c1|/η + 2|c0|/η2)2
≤ |C2

1−4C2|/|C2|2.

(4.10)

Proof Definition of η gives |hj/h0| ≤ 1/ηj for j = 1, 2, . . . . From these
inequalities and the equality C2

1−4C4 = (c1/c0)2 − 4(c2/c0) + 2(c1/c0)(h1/h0) −
3(h1/h0)2 + 4(h2/h0), we obtain the above inequalities easily. ¤

Assuming that |σ| and |γ̂| are small enough, let us bound η/d.

LEMMA 3. So long as |σ|/η ¿ 1 and |σ2− γ̂2|/η2 ¿ 1, the following inequalities
hold.

1 − 2|σ|/η − |σ2−γ̂2|/η2

1 + 2|σ|/η + |σ2−γ̂2|/η2
≤ η

d
≤ 1 + 2|σ|/η + |σ2−γ̂2|/η2

1 − 2|σ|/η − |σ2−γ̂2|/η2
. (4.11)

Proof We can bound the r.h.s. expression in (4.9), let it be Rj , by inequalities
|hj′/h0| ≤ 1/ηj′

(j′ = j, j−1, j−2). Then, the above bound is obtained by bounding
|cj/c0| = |Rj |1/j by inequality [(1+r)/(1−r)](1/j) ≤ (1+r)/(1−r) which is valid
for any integer j > 0 and any real number r such that 0 < r < 1.

We note that there exists a positive integer j′′ such that 1/η = |hj′′/h0|1/j′′
.

For j = j′′ +2, we obtain |(hj′′/h0) − 2σ(hj′′+1/h0) + (σ2− γ̂2)(hj′′+2/h0)| ≥
(1/ηj′′

) · (1 − 2|σ|/η − |σ2− γ̂2|/η2). Bounding |cj/c2| in (4.9) by this inequality,
and using [(1− r)/(1+ r)](1/j) ≥ (1− r)/(1+ r) which is valid for r such that
0 < r < 1, we obtain the lower bound. ¤

We investigate the above inequalities by transforming C(x) as

C(x) 7→ C(ηx)/h0η
2 def= C ′(x).

Then, H(x) is transformed as follows.
H(x) 7→ H(ηx)/h0

def= H ′(x),
H ′(x) = h′

m−2x
m−2 + · · · + h′

1x + 1,

max{|h′
m−2|, · · · , |h′

1|} = 1.
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Applying formula (2.2) to H ′(x), we see that

|γj/η| ≥ 1/2 or |γj | ≥ η/2 (j ≥ 3). (4.12)

Therefore, η is a number showing how the roots γ3, . . . , γm are distributed. In fact,
expressing the quantities in (4.10) by c′0 = c0/η2, c′1 = c1/η, c′2 = c2, C ′

1 =C1η and
C ′

2 =C2η
2, we can remove η from inequalities in (4.10). Let the roots of C ′(x) be

γ′
1, . . . , γ

′
m (γ′

i = γi/η; i = 1, . . . ,m). With γ′
1, γ

′
2, we can rewrite (4.11) as follows.

1 − |γ′
1+γ′

2| − |γ′
1γ

′
2|

1 + |γ′
1+γ′

2| + |γ′
1γ

′
2|

≤ η

d
≤ 1 + |γ′

1+γ′
2| + |γ′

1γ
′
2|

1 − |γ′
1+γ′

2| − |γ′
1γ

′
2|

. (4.13)

So long as γ′
1 and γ′

2 are small enough, the above inequalities are fairly accurate.

4.3. A formula for the minimum root separation

A fairly accurate upper bound of α′
c is currently not obtained, although we have

an order estimation by Proposition 3. Therefore, we set the following condition on
c2, c1, c0.

|c1/c2|2 < |c0/c2| ⇐⇒ |c1|2 < |c2c0|. (4.14)

Since the origin has been moved to α′
c, this condition will be well satisfied. If the

condition is not satisfied, we shift the origin slightly to satisfy the condition. With
the above condition, we define e as follows.

e
def= max{|c1/c2|, |c0/c2|1/2} = |c0/c2|1/2. (4.15)

Note that, if we transform C(x) to a regularized form by C(x) 7→ C̄(x) =
C(dx)/c2d

2 = c̄mxm + · · ·+x2 + c̄1x+ c̄0 and define ē as ē = min{|c̄1|, |c̄0|1/2},
then we have ē = e/d.

THEOREM 6. Let R̄in be the same as that in Theorem 1, with ē replaced by e/d. Let
R̄in be such that the polynomial y3 − (1−2R̄in)y2 + R̄in(2+R̄in)y + R̄2

in has three
real roots, and the largest root (a little smaller than 1) be ηmin/d (ηmin is a lower
bound of η). If e/d < 0.03 as well as |c1|2 < |c2c0| then the following inequality
holds.

|γ1 − γ2|2 >
|c2

1 − 4c2c0| − 2|c1c0|/ηmin − 7|c0|2/η2
min

(|c2| + |c1|/ηmin + 2|c0|/η2
min)2

. (4.16)

Proof We note that if e/d < 0.03 then R̄in < 0.0621 · · · and the above cubic
polynomial has three real roots. The regularization of C(x) in (4.4) tells us that
|γ1|, |γ2| < R̄ind, hence |σ|/η < R̄in(d/η) and |σ2−γ̂2|/η2 < R̄2

in(d/η)2. Then, by
putting y = η/d, (4.11) becomes

y2 − 2R̄iny − R̄2
in

y2 + 2R̄iny + R̄2
in

< y <
y2 + 2R̄iny + R̄2

in

y2 − 2R̄iny − R̄2
in

.

The l.h.s. of this inequality gives us a lower bound of η, and we obtain ηmin as in
the theorem. Replacing η by ηmin in the bottom inequality in (4.10), we obtain
(4.16). ¤
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COROLLARY 5. If e/d ≥ 0.03 then we have the following inequality.

|γ1 − γ2| ≥ 0.03d ·
√

3 − 2ξ − 7ξ2

1 + ξ + 2ξ2
, where ξ = 0.0442 · · · . (4.17)

Proof As a critical case that the close-root cluster of γ1 and γ2 are separated
from the other roots and inequality (4.11) holds narrowly, we consider the case of
ē = e/d = 0.03 (this number is pretty small compared with 1/9). In this case, we
have |c1/c2| ≤ 0.03d, |c0/c2| = (0.03d)2, R̄in = 0.0621 · · · , and ηmin/d = 0.678 · · · .
(ξ = ēd/ηmin = 0.0442 · · · ). We bound |c2

1−4c2c0| as |c2
1−4c2c0| ≥ |4c2c0|−|c1|2,

then the r.h.s. of (4.16) is monotone increasing for ē ∈ [0, 1]. Hence, substituting
the actual values to |c1/c2| etc. in the r.h.s. of (4.16), we obtain (4.17). ¤

5. Discussions

Our study in this paper is restricted in that the close roots are assumed to form
well-separated clusters and that only polynomials over C are treated. Developing
an algebraic algorithm for separating close roots distributed arbitrarily is a chal-
lenging theme. A more challenging theme is to find a reasonable lower bound for
the minimum root separation for polynomials over Z.

The separation algorithm presented in 3 will be very useful practically. The
underlying idea is so simple and effective that it will be applied to various prob-
lems. In fact, collaborating with Terui, one of the present authors (T.S.) developed
recently a numerical algorithm for computing the close roots in a cluster simulta-
neously and efficiently.

The formula in the corollary of Theorem 6 is practically not bad as the lower
bound for the minimum root separation. However, our formulas are not expressed
by the coefficients of the original polynomial A(x) but undergone a repetition of
separation of close-root clusters, and they are not elaborated yet. Furthermore,
our theory is not complete in that we set the condition (4.14). We should develop
a theory without such a condition.
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