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Abstract

Given a multivariate polynomial F (x, y, . . . , z), this paper deals with calculating
the roots of F w.r.t. x in terms of formal power series or fractional-power series in
y, . . . , z. If the problem is regular, i.e. the expansion point is not a singular point of a
root, then the calculation is easy, and the irregular case is considered in this paper.
We extend the generalized Hensel construction slightly so that it can be applied
to the irregular case. This extension allows us to calculate the roots of bivariate
polynomial F (x, y) in terms of Puiseux series in y. For multivariate polynomial
F (x, y, . . . , z), we consider expanding the roots into fractional-power series w.r.t.
the total-degree of y, . . . , z, and the roots are expressed in terms of the roots of
much simpler polynomials.

Running head : Solving Multivariate Algebraic Equation

1 Introduction

Given a multivariate polynomial F (x, y, . . . , z), this paper deals with calculating the
roots of F (x, y, . . . , z), with respect to x, in terms of formal power series or fractional-
power series in y, . . . , z, up to any given finite power.

This calculation is fundamentally important in mathematics and mathematical sci-
ences, see [Wal91] for a survey of recent studies. For bivariate polynomial F (x, y), a
simple method called Newton-Puiseux’s method has been discovered in 1850, and we
have already an elegant theory of Puiseux series (fractional-power series) of algebraic
functions; see [P1850] and [Wal78].

Classical Newton-Puiseux’s method is, however, very inefficient in that i) we must
introduce many algebraic numbers practically and ii) we must perform power series sub-
stitution and solve an equation at the determination of each expansion coefficient. Hence,
the classical method contains many problems for the practical use. As for i), Duval
[Duv89] for example presents a method which decreases the number of algebraic numbers
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to be introduced. As for ii), Kung and Traub [KT78] proposes to use Newton’s iterative
method for power series [GCL92]. These studies have made the computation of power
series roots practical, so long as bivariate polynomials are concerned. However, we have
many problems in multivariate case.

Suppose the expansion point of the power series is (y, . . . , z) = (0, . . . , 0), and let the
roots of F (x, 0, . . . , 0) be ζ1, . . . , ζd :

F (x, 0, . . . , 0) = (x− ζ1) · · · (x− ζd). (1.1)

If we are allowed to compute numbers ζ1, . . . , ζd numerically then the computation and
the resulting expressions of the roots will be much simpler than treating them as alge-
braic numbers. In this paper, we admit both approaches: ζ1, . . . , ζd may be computed
numerically hence approximately to any desired accuracy or may be treated exactly as al-
gebraic numbers. Another important note is that the computation is crucially dependent
on whether or not the following condition is satisfied.

Condition A The numbers ζ1, . . . , ζd are mutually different, i.e.,

ζi 6= ζj for any i 6= j. (1.2)

Following [KT78], we say that the problem is regular if Condition A is satisfied. Note
that if ζi = ζj (i 6= j) then ζi is a singular point of a root of F (x, y, . . . , z). If the problem
is regular, the computation of the roots is nothing but the Taylor series expansion and
quite easy: we have only to apply power series Newton’s iterative method or perform
the generalized Hensel construction, as will be explained in 2. For irregular problems,
however, both Newton’s iterative method and the generalized Hensel construction breaks
down. For bivariate polynomials, Kung and Traub proposed a transformation which
converts irregular problems to regular ones. However, the transformation cannot directly
be applied to multivariate case, and Condition A poses us a problem. In this paper, we
propose a new method which is applicable to not only bivariate but also multivariate
polynomials, by extending the generalized Hensel construction.

There is a close relationship between Newton’s iterative method and the method us-
ing Hensel construction. That is, the method using Hensel construction is a parallel
execution of linearly convergent Newton’s method, calculating all the roots simultane-
ously; see [Wan79] or [SS92] for the parallel Hensel construction. Furthermore, there
is a good similarity between calculating the roots of univariate polynomial f(x) numer-
ically and expanding the roots of multivariate polynomial F (x, y, . . . , z) symbolically.
Single-root Newton’s method for solving f(x) = 0 numerically, with initial approxima-
tion x = x(0) such that f(x(0)) ' 0, calculates the root by increasing the accuracy it-
eratively as x(k+1) = x(k) + ∆x(k+1), k = 0, 1, . . ., such that |∆x(k+1)| ≈ |∆x(k)|ρ with
ρ > 1; see [Iri81], for example. Durand-Kerner’s method [Dur60, Ker66 and Abe73]
calculates all the roots of f(x) simultaneously by starting from initial approximations

xi = x
(0)
i (i = 1, . . . , degx(f)). Kung-Traub’s method for bivariate polynomial F (x, y)

corresponds to single-root Newton’s method and, with an initial approximation x = x(0)

where x(0) is a root of F (x, 0), it calculates the higher power terms of power series itera-
tively. On the other hand, the method using parallel Hensel construction corresponds to
Durand-Kerner’s method.
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In 2, we review the generalized Hensel construction and its breakdown. In 3, we
consider calculating the power series roots of bivariate polynomial F (x, y) in irregular case,
by extending the generalized Hensel construction slightly. We will see that Puiseux series
expansions of the roots are obtained by this extension. In 4, we consider calculating the
power series roots of multivariate polynomial F (x, y, . . . , z) in irregular case, by applying
the extended Hensel construction. However, the application is not so direct: in the case
of multivariate polynomials of more than two variables, different kinds of fractional-power
series expansions are possible which show different analytic behaviors, and the expanded
series are not so simple as those in bivariate case. We will investigate fractional-power
series expansion of the roots, w.r.t. the total-degree of y, . . . , z; for the total-degree, see
2. Finally, in 5, we discuss our method from the viewpoint of practical usefulness.

2 Hensel construction and its breakdown

Let K be a number field of characteristic 0. The field of complex numbers is denoted
by C. By K[y, . . . , z], K(y, . . . , z) and K{y, . . . , z}, we denote the polynomial ring,
rational function field and power series ring, respectively, over K in variables y, . . . , z.
By (A1, . . . , Am), with A1, . . . , Am polynomials or algebraic functions, we denote an ideal
generated by A1, . . . , Am.

Let F (x, y, . . . , z) ∈ K[x, y, . . . , z]. By degx(F ) and degy(F ), we denote the degrees of
F with respect to x and y, respectively. Let T = cxe1

1 · · ·xen
n , with c ∈ K. By tdeg(T ), we

denote the total-degree of T , i.e., tdeg(T ) = e1 + · · ·+ en. Total-degree of a polynomial is
the maximum of total-degrees of its terms. The greatest common divisor of polynomials
F and G is denoted by gcd(F,G). Let F (x, y, . . . , z) be expressed as

F (x, y, . . . , z) = fd(y, . . . , z)xd + fd−1(y, . . . , z)xd−1 + · · ·+ f0(y, . . . , z). (2.1)

If fd = 1 then F is called monic w.r.t. x. If F has no multiple root w.r.t. x, then F is
called square-free w.r.t. x. As is well known,

F is square-free w.r.t. x ⇐⇒ gcd(F, dF/dx) = 1. (2.2)

In this paper, we calculate the roots by expanding them at (y=0, . . . , z=0). This re-
striction does not reduce the generality because the expansion at (y=y0, . . . , z=z0), with
y0, . . . , z0 nonzero numbers, is nothing but the expansion of the roots of F ′(x, y, . . . , z) =
F (x, y + y0, . . . , z + z0) at (y = 0, . . . , z = 0). Furthermore, when F (x, y, . . . , z) is not
monic w.r.t. x, we transform F into a monic polynomial F̃ by the following well-known
transformation.

F (x, y, . . . , z) =⇒ F̃ (x, y, . . . , z) = fd−1
d F (x/fd, y, . . . , z). (2.3)

Then, the roots χi(y, . . . , z) (i = 1, . . . , d) of F (x, y, . . . , z) w.r.t. x can be expressed by
the roots χ̃i(y, . . . , z) (i=1, . . . , d) of F̃ (x, y, . . . , z) w.r.t. x as

χi(y, . . . , z) = χ̃i(y, . . . , z)/fd(y, . . . , z), i = 1, . . . , d. (2.4)

Therefore, the problem is reduced to finding the roots of monic polynomial. Note that, if
fd(y, . . . , z) contains a constant term, hence fd(0, . . . , 0) 6= 0, then we can calculate f−1

d

in K{y, . . . , z} so we can convert F into monic by multiplying f−1
d to F .
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Next, let us consider the condition in (1.2), i.e., square-freeness of F (x, 0, . . . , 0). As is
well-known, decomposition of F into square-free factors, or square-free decomposition of F
can be done by the gcd and exact division operations, using relation (2.2). Hence, we may
assume without loss of generality that the given polynomial F (x, y, . . . , z) is square-free.
Note that, even with this assumption, F (x, 0, . . . , 0) may not be square-free.

Let F (x, y, . . . , z) be a monic square-free polynomial in K[x, y, . . . , z], and F (x, 0, . . . , 0)
be factorized in K[x] as

F (x, 0, . . . , 0) = G
(0)
1 (x) · · ·G(0)

r (x), r ≥ 2,

G
(0)
i and G

(0)
j are relatively prime for any i 6= j.

(2.5)

The generalized Hensel construction is to construct G
(k)
i (x, y, . . . , z) (i = 1, . . . , r) in

K{y, . . . , z}[x], successively for k = 1 ⇒ 2 ⇒ 3 ⇒ · · ·, satisfying

F (x, y, . . . , z) ≡ G
(k)
1 (x, y, . . . , z) · · ·G(k)

r (x, y, . . . , z) (mod (y, . . . , z)k+1),

degx(G
(k)
i ) = degx(G

(0)
i ), G

(k)
i (x, 0, . . . , 0) = G

(0)
i (x), i = 1, . . . , r.

(2.6)

See [Hen08] for the Hensel construction and [Lau82 and GCL92] for the generalized Hensel

construction. Note that the relative primality of G
(0)
i (x) and G

(0)
j (x) for any i 6= j, is

crucial in the above method.
In the actual computation, we set K = C, so F (x, 0, . . . , 0) is factorized as

F (x, 0, . . . , 0) = (x− ζ1)
m1 · · · (x− ζr)

mr ,

ζ1, . . . , ζr ∈ C, ζi 6= ζj for any i 6= j.
(2.7)

Then, we put G
(0)
i (x) = (x − ζi)

mi (i = 1, . . . , r), and the Hensel construction can

be performed if r ≥ 2. Since degx(G
(k)
i ) = mi and G

(k)
i is monic w.r.t. x, we have

G
(k)
i (x, y, . . . , z) = x− χ

(k)
i (y, . . . , z) if mi = 1. That is, the Hensel construction gives the

root corresponding to ζi if mi = 1. However, if mi ≥ 2, we must factorize G
(k)
i further into

linear factors to get the roots, which cannot be done by the conventional Hensel construc-
tion. Therefore, only one case which we must consider and for which the conventional
Hensel construction breaks down is that

F (x, 0, . . . , 0) = (x− ζ1)
m1 · · · (x− ζr)

mr , max{m1, . . . , mr} ≥ 2. (2.8)

3 Calculating the roots of F (x, y)

First of all, we note that the Hensel construction is applicable to F (x, y, . . . , z) ∈
K{y, . . . , z}[x]. Hence, we assume in this section that F (x, y) ∈ C{y}[x], including the
case of F (x, y) ∈ C[x, y]. This is necessary because, in the process of root calculation, we
first factorize F (x, y, . . . , z) in C{y, . . . , z}[x] by applying Hensel construction, obtaining
G(k)(x, y, . . . , z) ∈ C{y, . . . , z}[x] as a factor of F (see 3.2), then calculate the roots of
G(k)(x, y, . . . , z). Of course, the F (x, y, . . . , z) given initially is a polynomial.

We assumed that the polynomial given initially was monic w.r.t. x and square-free.
Hence, we assume that F (x, y) ∈ C{y}[x] is also monic and has no multiple root w.r.t. x.
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Furthermore, as the case for which the conventional Hensel construction breaks down, we
may assume without loss of generality that

F (x, 0) = xd. (3.1)

3.1 Initial factors and modulus

In order to perform the Hensel construction, we need relatively prime polynomials as
initial factors. We determine the initial factors by adding some terms containing y to the
leading term xd. The additional terms are determined by the method of Newton polygon
which we call Newton’s line (Newton’s line is a side of the Newton polygon).

Definition 1 (Newton’s line) For each nonzero term cxexyey of F (x, y), we plot a
dot at the point (ex, ey) in the two-dimensional Cartesian coordinate system. Let L be a
straight line such that it passes the point (d, 0) as well as another dot plotted and that no
dot plotted is below L; see Fig. 1. The line L is called Newton’s line for F .

F = x3 − x2y2 − xy3 + y46

-

S
S

S
S

S
S

S
SS
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s

s
L

δ

d ex

ey

Fig 1. Illustration of Newton’s Line L

Definition 2 (Newton’s polynomial) The sum of all the terms of F (x, y), which
are plotted on Newton’s line is called Newton’s polynomial for F .

Note that Newton’s line is uniquely determined by F (x, y). Let δ be the ey-coordinate
of intersection of L and ey-axis, hence Newton’s line is ex/d + ey/δ = 1. Let F (0)(x, y) be
Newton’s polynomial for F (x, y), hence F (0)(x, y) consists of some of the terms

xd, xd−1yδ/d, xd−2y2δ/d, . . . , ydδ/d.

Let F (0)(x, 1) be factorized over C as

F (0)(x, 1) = (x− ζ1)
m1 · · · (x− ζr)

mr ,

ζ1, . . . , ζr ∈ C, ζi 6= ζj for any i 6= j.
(3.2)

Then, since F (0)(x, y) is a homogeneous polynomial in x and yδ/d, F (0)(x, y) is factorized
in C[x, yδ/d] as

F (0)(x, y) = (x− ζ1y
δ/d)m1 · · · (x− ζry

δ/d)mr . (3.3)
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If r ≥ 2, we will use these factors as initial factors of Hensel construction.
Let δ̂ and d̂ be positive integers such that

δ̂/d̂ = δ/d, gcd(δ̂, d̂) = 1. (3.4)

Remark 1 We have 1 ≤ d̂ ≤ d, because Newton’s line passes a point (e1, ey), where
ex and ey are integers satisfying 0 ≤ ex < d, 0 < ey and δ/d = ey/(d− ex).

Lemma 1 Let F (x, y) be an element of C{y}[x], and let δ̂ and d̂ be defined as above
by using Newton’s line for F (x, y). Then, except for numerical coefficients, any term of
F (x, y) is contained in the set

{xdy(k+0)/d̂, xd−1y(k+δ̂)/d̂, xd−2y(k+2δ̂)/d̂, . . . , x0y(k+dδ̂)/d̂
∣∣∣ k = 0, 1, 2, . . .}.

Proof. Consider a term xexyey , where ex and ey are any integers such that 0 ≤ ex ≤
d, 0 ≤ ey and that (ex, ey) is not below Newton’s line L. The latter condition implies
ex/d + ey/δ ≥ 1. In order to prove the lemma, it is enough to show that there exist

integers i and k satisfying conditions 0 ≤ i ≤ d, 0 ≤ k, and xd−iy(k+iδ̂)/d̂ = xexyey . The
last condition is satisfied by putting i = d − ex and k = eyd̂ − iδ̂, so we have 0 ≤ i ≤ d.
The condition k ≥ 0 is also satisfied, because ex/d + ey/δ ≥ 1 means

k

δ̂d
=

eyd̂− (d− ex)δ̂

δ̂d
=

ex

d
+

ey

δ
− 1 ≥ 0.

This proves the lemma. 2

Lemma 1 leads us to define ideals Sk (k=1, 2, . . .) in C{y1/d̂}[x] as follows.

Sk = (x, yδ̂/d̂)d × (y1/d̂)k

= (xd, xd−1yδ̂/d̂, xd−2y2δ̂/d̂, . . . , x0ydδ̂/d̂)× (yk/d̂) (3.5)

= (xdy(k+0)/d̂, xd−1y(k+δ̂)/d̂, xd−2y(k+2δ̂)/d̂, . . . , x0y(k+dδ̂)/d̂).

We use Sk (k=1, 2, . . .) as moduli of Hensel construction.

3.2 Extended Hensel construction

In this subsection, given F (x, y) ∈ C{y}[x], we consider factorizing F (x, y) as F (x, y) =

G1(x, y) · · ·Gr(x, y) in C{y1/d̂}[x], with degx(Gi) ≥ 1 (i = 1, . . . , r) in general. We as-
sumed that F (0)(x, y) was factorized as in (3.3), so we put

F (0)(x, y) = G
(0)
1 (x, y) · · ·G(0)

r (x, y),

G
(0)
i (x, y) = (x− ζiy

δ̂/d̂)mi , i = 1, . . . , r.
(3.6)

Furthermore, for simplicity, we put

ŷ = yδ̂/d̂. (3.7)
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Lemma 2 (Lagrange’s interpolation polynomials) Let Ĝi(x, ŷ) (i=1, . . . , r) be
homogeneous polynomials in x and ŷ, with r ≥ 2 and degx(Ĝi) = mi (i=1, . . . , r), such
that

gcd(Ĝi, Ĝj) = 1 for any i 6= j. (3.8)

Then, for each l ∈ {0, . . . , d− 1}, where d = degx(Ĝ1 · · · Ĝr), there exists only one set of

polynomials {W (l)
i (x, ŷ) | i = 1, . . . , r} satisfying

W
(l)
1 [Ĝ1 · · · Ĝr/Ĝ1] + · · ·+ W (l)

r [Ĝ1 · · · Ĝr/Ĝr] = xlŷd−l,

degx(W
(l)
i (x, ŷ)) < degx(Ĝi(x, ŷ)), i = 1, . . . , r.

(3.9)

W
(0)
i , . . . , W

(d−1)
i (i = 1, . . . , r) are homogeneous polynomials in x and ŷ, of total-degree

mi. We call W
(l)
i (i=1, . . . , r) Lagrange’s interpolation polynomials.

Proof. There exists only one set of polynomials {W (l)
i | i = 1, . . . , r} satisfying (3.9)

with ŷ = 1. (For the proof, see [Lau82] or [SS92].) Since degx(W
(l)
i [Ĝ1 · · · Ĝr/Ĝi]) <

d, we can homogenize W
(l)
i (x, 1) and Ĝi(x, 1) (i = 1, . . . , r) simultaneously, which gives

W
(l)
i (x, ŷ) (i = 1, . . . , r) uniquely. Since the r.h.s. of the upper equality of (3.9) is of

total-degree d w.r.t. x and ŷ, W
(l)
i is of total-degree mi w.r.t. x and ŷ. 2

Theorem 1 Let F (x, y) be a monic square-free polynomial in x with coefficients in
K{y}. Let F (0)(x, y) be Newton’s polynomial for F (x, y) and factorized as in (3.6) with
r ≥ 2, and let Sk (k = 1, 2, . . .) be defined by (3.5). Then, for any positive integer k, we

can construct G
(k)
i (x, y) ∈ C{y1/d̂}[x] (i=1, . . . , r), satisfying

F (x, y) ≡ G
(k)
1 (x, y) · · ·G(k)

r (x, y) (mod Sk+1), (3.10)

G
(k)
i (x, y) ≡ G

(0)
i (x, y) (mod S1), i = 1, . . . , r. (3.11)

Proof. By mathematical induction on k.
Since F (x, y) ≡ F (0)(x, y) (mod S1), the theorem is valid for k = 0. We note that

G
(0)
i (x, y) (i = 1, . . . , r) are monic w.r.t. x and homogeneous w.r.t. x and ŷ. Suppose

that the theorem is valid up to the (k–1)-st construction step (k ≥ 1). Furthermore, as

induction assumptions, we assume that G
(k−1)
i is expressed as

G
(k−1)
i (x, y) = G

(0)
i (x, y) + ∆G

(1)
i (x, y) + · · ·+ ∆G

(k−1)
i (x, y),

degx(∆G
(k′)
i (x, y)) < degx(G

(0)
i (x, y)) = mi, k′ = 1, . . . , k − 1,

(3.12)

and that ∆G
(k′)
i (x, y)/yk′/d̂ (k′=1, . . . , k−1) are homogeneous polynomials in x and ŷ, of

total-degree mi w.r.t. x and ŷ. We put

∆F (k)(x, y) ≡ F (x, y)−G
(k−1)
1 (x, y) · · ·G(k−1)

r (x, y) (mod Sk+1). (3.13)

Then, Lemma 1 and induction assumptions tell us that ∆F (k)(x, y) is expressed as

∆F (k)(x, y) = f
(k)
d−1(y) · xd−1yδ̂/d̂ + · · ·+ f

(k)
0 (y) · x0ydδ̂/d̂,

f
(k)
l (y) = c

(k)
l yk/d̂, c

(k)
l ∈ C (l = 0, . . . , d− 1).

(3.14)
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We construct G
(k)
i (x, y) (i=1, . . . , r) by putting

G
(k)
i (x, y) = G

(k−1)
i (x, y) + ∆G

(k)
i (x, y), ∆G

(k)
i ≡ 0 (mod Sk). (3.15)

Substituting this expression for G
(k)
i in (3.10), and noting that ∆G

(k)
i ≡ 0 (mod Sk), we

see that (3.10) is satisfied if and only if the following equation is satisfied.

∆F (k) ≡ ∆G
(k)
1 [G

(0)
2 · · ·G(0)

r ] + · · ·+ ∆G(k)
r [G

(0)
1 · · ·G(0)

r−1] (mod Sk+1). (3.16)

Lemma 2, with Ĝi(x, ŷ) = G
(0)
i (x, y) (i=1, . . . , r), and ∆F (k) in (3.14) allow us to solve

this equation as

∆G
(k)
i (x, y) =

d−1∑

l=0

W
(l)
i (x, y)f

(k)
l (y), i = 1, . . . , r, (3.17)

where W
(l)
i (i=1, . . . , r) are defined in Lemma 2. The ∆G

(k)
i thus calculated is of degree

less than mi w.r.t. x and ∆G
(k)
i (x, y)/yk/d̂ is a homogeneous polynomial in x and ŷ, of

total-degree mi w.r.t. x and ŷ. This completes the proof. 2

Corollary 1 G
(k)
i (i=1, . . . , r) satisfying (3.10) with (3.11) are unique.

Proof. This follows directly from the uniqueness of W
(0)
i (x, y), . . . , W

(d−1)
i (x, y) (i =

1, . . . , r). 2

We call the above-mentioned construction extended Hensel construction.
In the rest of this subsection, we show that if F (0)(x, y) is factorized in C[x, y] then

F (x, y) is factorized in C{y}[x]. In order to show this, we have only to show that extended
Hensel construction can be performed in C[x, y] in this case.

Theorem 2 Let F (0)(x, y) be factorized in C[x, y] as

F (0)(x, y) = F
(0)
1 (x, y) · · ·F (0)

s (x, y), s ≥ 2,

gcd(F
(0)
i , F

(0)
j ) = 1 for any i 6= j.

(3.18)

Let the extended Hensel construction of F (x, y), with initial factors F
(0)
1 (x, y), · · · , F (0)

s (x, y),
be as follows (k is any positive integer).

F (x, y) ≡ F
(k)
1 (x, y) · · ·F (k)

s (x, y) (mod Sk+1). (3.19)

Then, F
(k)
i (x, y) ∈ C[x, y] (i= 1, . . . , s).

Proof. Lagrange’s interpolation polynomials W
(0)
i , . . . , W

(d−1)
i (i=1, . . . , s), satisfying

(3.9) with Ĝi = F
(0)
i , are calculated by the extended Euclidean algorithm which consists

of only rational operations. Hence, W
(l)
i ∈ K(y)[x] (l=0, . . . , d− 1). On the other hand,

Lemma 2 says that W
(l)
i is homogeneous w.r.t. x and ŷ. Hence, W

(l)
i ∈ K[x, y]. Now,

the theorem is apparently valid for k = 0. Suppose that it is valid up to the (k − 1)-st

construction step (k ≥ 1), then putting ∆F (k) ≡ F − F
(k−1)
1 · · ·F (k−1)

s (mod Sk+1), we

8



find that ∆F (k) ∈ C[x, y]. Hence, the construction formula (3.17) tells us that F
(k)
i (i=

1, . . . , s) are also in C[x, y]. 2

Remark 2 If the slope of Newton’s line is an integer then d̂ = 1 and ŷ = yδ̂, so
F (0)(x, y) is obviously factorized in C{y}[x]. However, Theorem 2 is valid regardless of
whether d̂ = 1 or not (see Example 1, below).

In the actual root calculation, F (0)(x, y) should first be factorized as in (3.18) then be
factorized as in (3.6), although we have stated Theorem 1 earlier than Theorem 2.

3.3 Example of extended Hensel construction

Example 1 F (x, y) = x5 + x4y − 2x3y − 2x2y2 + x(y2 − y3) + y3.

We have d = degx(F (x, y)) = 5. Newton’s line L is determined to be ex/5 + ey/2.5 = 1

with δ = 2.5, hence δ/d = 1/2 = δ̂/d̂ and δ̂ = 1 and d̂ = 2. The ideal S0 is

S0 = (x, y1/2)5 = (x5, x4y1/2, x3y, x2y3/2, xy2, y5/2).

Newton’s polynomial F (0)(x, y) is determined and factorized as

F (0)(x, y) = x5 − 2x3y + xy2 = x(x + y1/2)2(x− y1/2)2.

Hence, we put G
(0)
1 = x, G

(0)
2 = (x + y1/2)2, G

(0)
3 = (x− y1/2)2.

Lagrange’s interpolation polynomials are calculated as

W
(0)
1 = y1/2 , W

(0)
2 = −1

2
xy1/2 − 3

4
y , W

(0)
3 = −1

2
xy1/2 +

3

4
y ,

W
(1)
1 = 0 , W

(1)
2 =

1

4
xy1/2 +

1

2
y , W

(1)
3 = −1

4
xy1/2 +

1

2
y ,

W
(2)
1 = 0 , W

(2)
2 = −1

4
y , W

(2)
3 =

1

4
y ,

W
(3)
1 = 0 , W

(3)
2 = −1

4
xy1/2 , W

(3)
3 =

1

4
xy1/2 ,

W
(4)
1 = 0 , W

(4)
2 =

1

2
xy1/2 +

1

4
y , W

(4)
3 =

1

2
xy1/2 − 1

4
y .

One can check easily that these polynomials satisfy (3.9).
For S2 = (x5y, x4y3/2, x3y2, x2y5/2, xy3, y7/2), we have

∆F (1) ≡ F −G
(0)
1 G

(0)
2 G

(0)
3 (mod S2)

= y1/2 · x4y1/2 − 2y1/2 · x2y3/2 + y1/2 · y5/2.

Hence, f
(1)
4 = y1/2, f

(1)
2 = −2y1/2, f

(1)
0 = y1/2 and f

(1)
3 = f

(1)
1 = 0. Using these

polynomials (in ŷ = y1/2) and formula in (3.17), we obtain

G
(1)
1 = G

(0)
1 + W

(0)
1 f

(1)
0 = x + y,

G
(1)
2 = G

(0)
2 + W

(4)
2 f

(1)
4 + W

(2)
2 f

(1)
2 + W

(0)
2 f

(1)
0 = (x + y1/2)2,

G
(1)
3 = G

(0)
3 + W

(4)
3 f

(1)
4 + W

(2)
3 f

(1)
2 + W

(0)
3 f

(1)
0 = (x− y1/2)2.

9



For S3 = (x5y3/2, x4y2, x3y5/2, x2y3, xy7/2, y4), we have

∆F (2) ≡ F −G
(1)
1 G

(1)
2 G

(1)
3 (mod S3)

= −y · xy2.

Hence, f
(2)
1 = −y and f

(2)
4 = f

(2)
3 = f

(2)
2 = f

(2)
0 = 0 and we obtain

G
(2)
1 = G

(1)
1 + 0 = x + y,

G
(2)
2 = G

(1)
2 + W

(1)
2 f

(2)
1 = (x + y1/2)2 − (

1

4
xy3/2 +

1

2
y2),

G
(2)
3 = G

(1)
3 + W

(1)
3 f

(2)
1 = (x− y1/2)2 + (

1

4
xy3/2 − 1

2
y2).

Continuing two more iterations, we obtain

G
(4)
1 = x + y + y2,

G
(4)
2 = (x + y1/2)2 − (

1

4
xy3/2 +

1

2
y2)− (

1

2
xy2 +

3

4
y5/2)− (

53

64
xy5/2 +

9

8
y3),

G
(4)
3 = (x− y1/2)2 + (

1

4
xy3/2 − 1

2
y2)− (

1

2
xy2 − 3

4
y5/2) + (

53

64
xy5/2 − 9

8
y3).

We note that G
(4)
2 and G

(4)
3 can be written as

G
(4)
2 = G

(4)
P + y1/2G

(4)
A ,

G
(4)
3 = G

(4)
P − y1/2G

(4)
A ,

where G
(4)
P and G

(4)
A are given by

G
(4)
P = (x2 + y)− 1

2
y2 − 1

2
xy2 − 9

8
y3,

G
(4)
A = 2x− 1

4
xy − 3

4
y2 − 53

64
xy2.

The above computation suggests us that G
(∞)
1 ∈ C[x, y]. In fact, this suggestion is

true by Theorem 2 because F (0)(x, y) in the above example is factorized in C[x, y] as
F (0)(x, y) = x (x4 − 2x2y + y2). Furthermore, Theorem 5 to be presented in the next

section will show that G
(∞)
P , G

(∞)
A ∈ C[x, y].

3.4 Calculating the roots in C{y1/d̄}
In this subsection, we consider factorizing F (x, y) into linear factors over C as

F (x, y) = F̄1(x, y) · · · F̄d(x, y) = (x− χ1(y)) · · · (x− χd(y)),

χi(y) ∈ C{y1/d̄i} with d̄i a positive integer, i = 1, . . . , d,
(3.20)

10



where F (x, y) is in C{y}[x], monic w.r.t. x and square-free. We first simplify the problem
using Theorem 2.

As the factorization in (3.18), suppose that we have the following.

F (0)(x, y) = H1(x, y)m1H2(x, y)m2 · · ·Hs(x, y)ms (3.21)

(irreducible factorization in C[x, y]),

gcd(Hi, Hj) = 1 for any i 6= j. (3.22)

The degree of Hi is related with d̂, as the following lemma shows.

Lemma 3 Let F (0)(x, y) be factorized as in (3.21) with (3.22). Then,

d̂ | degx(Hi) for any i such that Hi 6= x. (3.23)

Proof. Since Hi(x, y) is irreducible in C[x, y], Hi(x, y) must be of the form

Hi(x, y) = xri + · · ·+ c0y
ρi , c0 6= 0, ρi/ri = δ/d.

Here, ri and ρi are nonzero integers and d̂ and δ̂ are the smallest positive integers satisfying
δ̂/d̂ = δ/d, hence we obtain (3.23). 2

Suppose that s ≥ 2 in (3.21). Then, Theorem 2 assures that we can perform the
factorization in C{y}[x], of F (x, y) as follows.

F (x, y) ≡ F
(k)
1 (x, y) · · ·F (k)

s (x, y) (mod Sk+1),

F
(k)
i (x, y) ≡ Hi(x, y)mi (mod S1), i = 1, . . . , s.

(3.24)

Remember that Hi(x, y) is irreducible in C[x, y] and homogeneous w.r.t. x and yδ̂/d̂.
Hence, for Hi(x, y) 6= x, we can factorize Hi(x, 1) as

Hi(x, 1) = (x− ζi,1) · · · (x− ζi,ri
), ζi,j1 6= ζi,j2 if j1 6= j2,

where ri = degx(Hi). Therefore, we have

Fi(x, y) ≡ Hi(x, y)mi (mod S1)

≡ (x− ζi,1y
δ̂/d̂)mi · · · (x− ζi,ri

yδ̂/d̂)mi (mod S1). (3.25)

Using the above (x− ζi,jy
δ̂/d̂)mi (j =1, . . . , ri) as initial factors of Hensel construction, we

can factorize F
(k)
i (x, y) in C{y1/d̂}[x] as described in 3.2. Hence, in order to perform the

factorization of G(x, y) into linear factors, we have only to consider G(x, y) such that

G(x, y) ∈ C{y1/d̂}[x], G(x, y) is monic w.r.t. x,

G(x, y) ≡ (x− ζyδ̂/d̂)m (mod S1), m ≥ 2.
(3.26)

Of course, G(x, y) corresponding to Hi(x) = x is in C{y}[x].

11



Now, we describe a method of factorizing G(x, y) into linear factors. First, we perform
the following transformation for G(x, y).

G(x, y) =⇒ G′(x, y) = G(x + ζyδ̂/d̂, y). (3.27)

Then, we have

G′(x, y) ∈ C{y1/d̂}[x], G′(x, y) ≡ xm (mod S1). (3.28)

Therefore, without loss of generality, we may assume that ζ = 0 in (3.26), i.e.,

G(x, y) ≡ xm (mod S1). (3.29)

Eq. (3.29) is similar to (3.1), and we perform the factorization of G(x, y) similarly
to that described in 3.1 and 3.2. That is, we draw Newton’s line for G(x, y), construct

Newton’s polynomial G(0)(x, y) ∈ C[x, y1/d̂], factorize G(0)(x, y) over C, and perform the
extended Hensel construction. Only one thing that needs explanation is the determination
of modulus of Hensel construction.

Let Newton’s line, in the ex-ey coordinate plane, for G(x, y) be ex/m + ey/µ = 1, and
let m̂ and µ̂ be positive integers satisfying

µ̂/m̂ = µ/m, gcd(µ̂, m̂) = 1. (3.30)

Then, instead of Lemma 1, we have the following lemma for G(x, y).

Lemma 4 Except for numerical coefficients, any term of G(x, y) is contained in the
set

{xmy(k+0)/(d̂m̂), xm−1y(k+d̂µ̂)/(d̂m̂), . . . , x0y(k+md̂µ̂)/(d̂m̂)
∣∣∣ k = 0, 1, 2, . . .}. (3.31)

Proof. A slight modification of the proof for Lemma 1 proves this. 2

Lemma 4 leads us to define ideals S̄k (k = 1, 2, . . .) in C{y1/(d̂m̂)}[x] as follows which
we use as moduli of extended Hensel construction for G(x, y).

S̄k = (x, yµ̂/m̂)m × (y1/(d̂m̂))k

= (xm, xm−1yµ̂/m̂, xm−2y2µ̂/m̂, . . . , x0yµ)× (yk/(d̂m̂)). (3.32)

Remark 3 Since m̂ is a divisor of m, we may think that each term in (3.31) is

contained in C{y1/(d̂m)}[x].

Remark 4 Consider (3.21) and suppose that H1(x, y) = x so Hi(x, y) 6= x for i ≥ 2.
Then, d = m1 + r2m2 + · · · + rsms and Lemma 3 tells us that d̂ | gcd(r2, . . . , rs). If
Hi(x, y) 6= x for every i, then we have d = r1m1 + · · ·+ rsms and d̂ | gcd(r1, . . . , rs). By
this, we can easily get an upper bound of the denominator of the fractional powers.

Now, we can state our main theorem.
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Theorem 3 Let F (x, y) ∈ K[x, y] be monic w.r.t. x and square-free. Then, by re-
peated use of the extended Hensel construction, we can factorize F (x, y) into the form
(3.20). Furthermore, let Newton’s polynomial F (0)(x, y) for F (x, y) be factorized as in
(3.21) with (3.22), and let F (x, y) be factorized as in (3.24), where we put H1(x, y) = x.
(If F (0)(x, y) does not contain x as a factor then we ignore F1(x, y) below.) Then, we have

F1(x, y) = (x− χ
(1)
1 (y)) · · · (x− χ(1)

m1
(y)), (3.33)

χ
(1)
j (y) ∈ C{y1/m1} (j = 1, . . . , m1),

Fi(x, y) = (x− χ
(i)
1 (y)) · · · (x− χ(i)

miri
(y)), (3.34)

χ
(i)
j (y) ∈ C{y1/mid̂} (j = 1, . . . , miri), 2 ≤ i ≤ s.

Proof. Most part of this theorem has already been proved, and we have only to show
that we can factorize F (x, y) into linear factors w.r.t. x. Applying the extended Hensel
construction to G(x, y) in (3.26), we can factorize it as G(x, y) = Ḡ1(x, y) · · · Ḡρ(x, y),

Ḡi ∈ C{y1/(d̂m̂)}[x] (i=1, . . . , ρ). The Ḡi may still be of degree greater than 1. Then, we
apply the procedure described in this subsection to Ḡi again. This application is possible
because, by the assumption of square-freeness of F (x, y), every root of F (x, y) is different
from each other and we can construct Newton’s polynomial for any Ḡi of degree ≥ 2.
Therefore, we will finally obtain linear factors. 2

Example 2 Let G(x, y) be the third factor G3(x, y) in Example 1.

G(x, y) = (x− y1/2)2 + (
1

4
xy3/2 − 1

2
y2)− (

1

2
xy2 − 3

4
y5/2) + (

53

64
xy5/2 − 9

8
y3)− · · · .

With the transformation x ⇒ x + y1/2, G(x, y) becomes

G(x, y) =⇒ x2 + (
1

4
xy3/2 − 1

4
y2)− (

1

2
xy2 − 1

4
y5/2) + (

53

64
xy5/2 − 19

64
y3)− · · · .

We have m = degx(G) = 2. Newton’s line is ex/2 + ey/2 = 1, hence m̂ = µ̂ = 1 and the
extended Hensel construction can be performed in C{y1/2}[x]. Newton’s polynomial is

G(0)(x, y) = x2 − y2/4 = (x + y/2)(x− y/2),

so we define ideals S̄k (k=1, 2, . . .) as follows.

S̄k = (x, y)2 × (y1/2)k = (x2yk/2, xy1+k/2, y2+k/2).

Put Ḡ
(0)
1 = x + y/2 and Ḡ

(0)
2 = x − y/2. Lagrange’s interpolation polynomials for

{Ḡ(0)
1 , Ḡ

(0)
2 } are determined as

W
(0)
1 = −y , W

(0)
2 = y ,

W
(1)
1 = y/2 , W

(1)
2 = y/2 .

For S̄2 = (x2y, xy2, y3), we have

∆Ḡ(1) ≡ G− Ḡ
(0)
1 Ḡ

(0)
2 ≡ (

1

4
y1/2) · xy + (

1

4
y1/2) · y2 (mod S̄2).
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Hence, we can calculate Ḡ
(1)
i = Ḡ

(0)
i + ∆Ḡ

(1)
i (i=0, 1) as follows.

Ḡ
(1)
1 = Ḡ

(0)
1 + W

(1)
1 · (1

4
y1/2) + W

(0)
1 · (1

4
y1/2) = x +

1

2
y − 1

8
y3/2,

Ḡ
(1)
2 = Ḡ

(0)
2 + W

(1)
2 · (1

4
y1/2) + W

(0)
2 · (1

4
y1/2) = x− 1

2
y +

3

8
y3/2.

Similarly, for S̄3 = (x2y3/2, xy5/2, y7/2), we obtain

Ḡ
(2)
1 (x, y) = x +

1

2
y − 1

8
y3/2 + 0,

Ḡ
(2)
2 (x, y) = x− 1

2
y +

3

8
y3/2 − 1

2
y2,

satisfying G(x, y) ≡ Ḡ
(2)
1 (x, y)Ḡ

(2)
2 (x, y) (mod S̄3). 2

Putting Ḡ
(k)
i (x, y) = x − χ

(k)
i (y), i = 1, 2, we see that χ

(k)
i satisfies F (χ

(k)
i (y), y) ≡ 0

(mod y2+(k+1)/2). Since the extended Hensel construction is unique, as Corollary 1 says,

the series χ
(k)
i (y) must be Puiseux series of a root of F (x, y).

4 Calculating the roots of F (x, y, . . . , z)

Now, let us consider the multivariate case ; here, by multivariate case, we mean that
the given polynomial F (x, y, . . . , z) contains three or more variables. As in 3, we assume
that F (x, y, . . . , z) is monic w.r.t. x, square-free, and satisfies

F (x, 0, . . . , 0) = xd. (4.1)

4.1 Various fractional-power series expansions

We note that in the multivariate case there are many different kinds of fractional-
power series expansions which show different analytic behaviors. In this subsection, we
show this fact explicitly by simple examples, which will help the reader to understand the
fractional-power series expansion of the roots of multivariate polynomials, and explain
why we investigate the power series expansion w.r.t. the total-degree.

In many cases, some roots can be expanded into power series of fractional powers for
only one variable and of integral powers for other variables. Let a given polynomial be
F (x, y, z1, . . . , zn), and assume that F (x, y, 0, . . . , 0) is factorized as follows.

F (x, y, 0, . . . , 0) = F
(0)
1 (x, y) · · ·F (0)

r (x, y),

F
(0)
i (x, y) = (x− ξi(y))mi , i = 1, . . . , r,

ξi(y) 6= ξj(y) for any i 6= j,

(4.2)

where ξi(y) ∈ C{y1/d̂}, with d̂ a positive integer. The above factorization, to any desired
power of y, can be done by the method described in 3. The roots ξi(y) (i=1, . . . , d) are
algebraic functions over C(y), and we have an algebraic extension field C(y, ξi). Therefore,
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using the extended Euclidean algorithm over C(y, ξ1, . . . , ξr), we can calculate Lagrange’s

interpolation polynomials W
(l)
1 (x, y), . . . , W (l)

r (x, y) (l=0, . . . , d−1) satisfying

W
(l)
1 [F

(0)
1 · · ·F (0)

r /F
(0)
1 ] + · · ·+ W (l)

r [F
(0)
1 · · ·F (0)

r /F (0)
r ] = xl,

degx(W
(l)
i (x, y)) < degx(F

(0)
i (x, y)), i = 1, . . . , r.

(4.3)

Using F
(0)
i (x, y) and W

(l)
i (x, y), we can perform the conventional Hensel construction

for F (x, y, z1, . . . , zn) with moduli Sk = (z1, . . . , zn)k (k = 1, 2, . . .). The result is an
integral-power series in z1, . . . , zn. If mi = 1, which occurs frequently, we obtain a desired
expansion of the root corresponding to ξi. In this expansion, an expansion coefficient may
become infinite as y → 0. Let us convince ourselves of this by an example.

Example 3 Expansion using bivariate linear factors.

F (x, y, z) = x2 + (y − z)x− y − z + y2 − z2. (4.4)

Applying the extended Hensel construction, we can factorize F (x, y, 0) as

F (x, y, 0) = x2 + yx− y + y2 = (x− ξ1(y))(x− ξ2(y)),

ξi(y) = −y

2
− (−1)i√y(1− 3

8
y − 9

128
y2 − 27

1024
y3 − · · ·), i = 1, 2.

(4.5)

We put F
(0)
i (x, y) = x− ξi(y) (i=1, 2). Note that we have

ξ1 + ξ2 = −y, ξ1ξ2 = −y + y2,

ξ2
i = −yξi + y − y2 (i = 1, 2).

Using these relations only, we can perform the following calculations. Lagrange’s inter-
polation polynomials W

(l)
1 ,W

(l)
2 (l=0, 1) satisfying (4.3) are

W
(0)
1 =

2ξ1 + y

4y − 3y2
, W

(1)
1 =

−yξ1 + 2y − 2y2

4y − 3y2
,

W
(0)
2 =

2ξ2 + y

4y − 3y2
, W

(1)
2 =

−yξ2 + 2y − 2y2

4y − 3y2
.

The Hensel construction of F (x, y, z) with moduli Sk = (zk) (k=1, 2, · · ·) gives us

F
(k)
1 (x, y, z) = x− ξ1 +

−2ξ1 + (ξ1 − 3)y + 2y2

4y − 3y2
z + · · · ,

F
(k)
2 (x, y, z) = x− ξ2 +

−2ξ2 + (ξ2 − 3)y + 2y2

4y − 3y2
z + · · · .

(4.6)

Thus, the roots of F (x, y, z) are expanded into integral-power series in z. Similarly, we
can express the roots in terms of integral-power series in y. 2

F
(k)
i (x, y, z) (i=1, 2) in (4.6) show that

(coefficient of z in F
(k)
i (x, y, z)) −→∞ as y → 0.
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On the other hand, at y = 0, F (x, 0, z) is factorized as

F (x, 0, z) = (x− η1(z))(x− η2(z)),

ηi(z) =
z

2
− (−1)i

√
z
(
1 +

5

8
z − 25

128
z2 +

125

1024
z3 − · · ·

)
, i = 1, 2.

(4.7)

We see that F
(k)
i (x, y, z) in (4.6) does not converge to (x − ηi(z)) if we set y → 0. This

means that Hensel constructions with initial factors in (4.5) and (4.7) lead to series which
show different analytic behaviors at y = 0 and z = 0. Note that the series in (4.6) are
Taylor series w.r.t. z while the series in (4.7) are Puiseux series w.r.t. z.

If we expand the roots w.r.t. the total-degree, we obtain an expression which converges
to (4.5) and (4.7), respectively, as z → 0 and y → 0.

Example 4 Expansion w.r.t. the total-degree.
We use the same polynomial as in Example 3, and introduce the total-degree variable t
by the transformation y → ty, z → tz:

F (x, y, z) = x2 + t(y − z)x− t(y + z) + t2(y2 − z2).

The roots χi(y, z) of F (x, y, z), w.r.t. x, are

χi(y, z) =
−t(y − z)− (−1)i

√
t2(y − z)2 + 4t(y + z)− 4t2(y2 − z2)

2
, i = 1, 2.

Expanding the roots into fractional-power series in t, we obtain

χi(y, z) =
1

2
t(z − y)− (−1)i

√
t(y + z)

√
1− t(3y2 + 2yz − 5z2)/4(y + z)

=
1

2
t(z − y)− (−1)it1/2√y + z

{
1− 1

8
tR(y, z)− 1

128
t2R(y, z)2 − · · ·

}
,

where R(y, z) = (3y2 + 2yz − 5z2)/(y + z). Putting t = 1 in the above expressions, we
obtain the required expansion. 2

We note that, in the above expressions, expansion coefficients do not become infinite
if we set y → 0 and/or z → 0. Furthermore, we have the following property.

[expansion of F (x, y, z)]
y→0−→ [expansion of F (x, 0, z)]

z→0−→ [expansion of F (x, y, 0)]
(4.8)

This convergence property seems to be desirable, however, the extended Hensel construc-
tion w.r.t. the total-degree does not always give this property. For example, consider

F (x, y, z) = x2 + (y − z3)x− (y + z3) + (y2 − z6).

This polynomial is nothing but the one given in Example 4, with the replacement z → z3,
and both F (x, y, 0) and F (x, 0, z) are expanded into fractional-power series. However,
expansion w.r.t. the total-degree will lead to an expression in C{y1/2, z}[x]. If we define
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the total-degree with weights 1 and 1/3 for y and z, respectively, then we obtain the
expansion satisfying (4.8).

It should be noted that the property (4.8) cannot always be attained even if we define
the total-degree with any weights for y and z, as the following example shows.

Example 5 Expansion w.r.t. total-degree of various weights.

F (x, y, z) = x2 − 2(y2 + z2)x− (y3 + yz + z3).

The roots of F (x, y, z) w.r.t. x are

χi(y, z) = y2 + z2 − (−1)i{(y2 + z2)2 + (y3 + yz + z3)}1/2, i = 1, 2.

By defining the weights of y and z in any way, series expansion of the root χi(y, z) is
classified into one of the following five cases.

Case 1. weights = (y : 1, z : ∞) : expressed with
√

y3,

Case 2. weights = (y : 1, z : 2) : expressed with
√

y3 + yz,

Case 3. weights = (y : 1, z : 1) : expressed with
√

yz,

Case 4. weights = (y : 2, z : 1) : expressed with
√

z3 + zy,

Case 5. weights = (y : ∞, z : 1) : expressed with
√

z3.

In fact, the series expansions become as follows (since F (x, y, z) is symmetric w.r.t. y and
z, we consider only Cases 1 ∼ 3).

Case 1: χi = (y2 + z2)− (−1)i
√

y3
{
1 +

1

2
R1(y, z)− 1

8
R2

1(y, z) + · · ·
}
,

where R1(y, z) = (yz + z3 + y4 + 2y2z2 + z4)/y3,

Case 2: χi = (y2 + z2)− (−1)i
√

y3 + yz
{
1 +

1

2
R2(y, z)− 1

8
R2

2(y, z) + · · ·
}
,

where R2(y, z) = (z3 + y4 + 2y2z2 + z4)/(y3 + yz),

Case 3: χi = (y2 + z2)− (−1)i√yz
{
1 +

1

2
R3(y, z)− 1

8
R2

3(y, z) + · · ·
}
,

where R3(y, z) = (y3 + z3 + y4 + 2y2z2 + z4)/yz.

We see that all of these expressions show different analytic behaviors at y = 0 and z = 0.
2

4.2 Extended Hensel construction w.r.t. the total-degree

Although property (4.8) is not always satisfied, expansion w.r.t. the total-degree seems
to be most desirable. Therefore, in this subsection, we investigate it in details. Note that
the expansions w.r.t. total-degree in previous subsection were obtained through the root
formula hence the method is not applicable to high degree polynomials.

We introduce the total-degree variable t by the replacement y → ty, . . . , z → tz in
F (x, y, . . . , z), hence the total-degree is for subvariables y, . . . , z.
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Definition 3 (Newton’s line for multivariate polynomial) For each nonzero
term cxexyey · · · zez of F (x, y, . . . , z), we plot a dot at the point (ex, ey + · · · + ez) in the
ex-et two-dimensional Cartesian coordinate system. Let L be a straight line such that it
passes the point (d, 0) as well as another dot plotted and that no dot plotted is below L.
The line L is called Newton’s line for F .

Definition 4 (Newton’s polynomial for multivariate polynomial) The sum
of all the terms of F (x, y, . . . , z), which are plotted on Newton’s line is called Newton’s
polynomial for F .

Let Newton’s line be ex/d + et/δ = 1. Let δ̂ and d̂ be positive integers satisfying

δ̂/d̂ = δ/d, gcd(δ̂, d̂) = 1. (4.9)

We define ideals Sk (k=1, 2, . . .) as follows.

Sk = (x, tδ̂/d̂)d × (t1/d̂)k

= (xdt(k+0)/d̂, xd−1t(k+δ̂)/d̂, xd−2t(k+2δ̂)/d̂, . . . , x0t(k+dδ̂)/d̂). (4.10)

Remark 5 Since a term cxexyey · · · zez is plotted uniquely at the point (ex, ey+· · ·+ez)
in the ex-et plane, Lemma 1 in 3 tells us that any term of F (x, y, . . . , z) is plotted at one
of the points

{
(d− 0, (k + 0)/d̂), (d− 1, (k + δ̂)/d̂), . . . , (0, (k + dδ̂)/d̂)

∣∣∣ k = 0, 1, 2, . . .
}
.

Remark 6 The total-degree variable t will appear only temporally in the computation
and it will be erased at the last step of computation. Therefore, we will say, for example,
that F (x, y, . . . , z) with total-degree variable is in C[x, y, . . . , z]. However, we will also

say, for example, that F (0)(x, y, . . . , z) is a homogeneous polynomial in x and tδ̂/d̂. Note
that there is a good similarity between the treatment for bivariate case and that for
multivariate case when viewed w.r.t. variables x and t.

In the bivariate case, we have seen that F (x, y) can be factorized in C{y}[x] if corre-
sponding Newton’s polynomial F (0)(x, y) can be factorized in C[x, y] (Theorem 2). In this
subsection, we show that a similar factorization can be performed for multivariate polyno-
mial F (x, y, . . . , z), too. Let F (0)(x, y, . . . , z) be Newton’s polynomial for F (x, y, . . . , z),

defined as above, then F (0) is homogeneous w.r.t. x and t̂ = tδ̂/d̂. In general, F (0) can be
factorized in C[x, y, . . . , z] as

F (0)(x, y, . . . , z) = H1(x, y, . . . , z)m1 · · ·Hs(x, y, . . . , z)ms (4.11)

(irreducible factorization in C[x, y, . . . , z]),

gcd(Hi, Hj) = 1 for any i 6= j, (4.12)

degx(Hi) = ri, i = 1, . . . , s. (4.13)

Suppose that s ≥ 2. We put

F
(0)
i (x, y, . . . , z) = Hi(x, y, . . . , z)mi , i = 1, . . . , s. (4.14)
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Lemma 5 For each l ∈ {0, . . . , d − 1}, there exist Lagrange’s interpolation polyno-

mials W
(l)
1 , . . . , W (l)

s in K(y, . . . , z)[x], satisfying

W
(l)
1 [F

(0)
1 · · ·F (0)

s /F
(0)
1 ] + · · ·+ W (l)

s [F
(0)
1 · · ·F (0)

s /F (0)
s ] = xl,

degx(W
(l)
i ) < degx(F

(0)
i ), i = 1, . . . , s.

(4.15)

For each i ∈ {1, . . . , s}, W
(l)
i t̂d−l (l=0, . . . , d−1), with t̂ = tδ̂/d̂, are homogeneous polyno-

mials in x and t̂, of total-degree degx(F
(0)
i ) w.r.t. x and t̂.

Proof. We can calculate W
(l)
i by the extended Euclidean algorithm which consists of

only rational operations on the coefficients w.r.t. x. Hence, W
(l)
i ∈ K(y, . . . , z)[x]. Since

F
(0)
i is homogeneous w.r.t. x and t̂, so is W

(l)
i . Since degx(W

(l)
i [F

(0)
1 · · ·F (0)

s /F
(0)
i ]) < d,

if we multiply t̂d−l to the upper equality in (4.15), both sides of the equality become

homogeneous polynomials w.r.t. x and t̂. Therefore, W
(l)
i t̂d−l is a homogeneous polynomial

in x and t̂. 2

Remark 7 Contrary to (3.9) for bivariate case, we defined Lagrange’s interpolation
polynomials without multiplying t̂d−l to the upper equality in (4.15). The reason is that,

in the multivariate case, W
(l)
1 , . . . , W (l)

s are rational functions in y, . . . , z with different
denominators in general. Hence, we cannot clear the denominators by multiplying a
simple expression to the equality.

Theorem 4 Let F (x, y, . . . , z) be a polynomial in K[x, y, . . . , z], monic w.r.t. x and
square-free. Let F (0)(x, y, . . . , z) be Newton’s polynomial for F , defined as in Def. 4, and
be factorized in K[x, y, . . . , z] as in (4.11) with (4.12). Then, for any positive integer k,

we can construct F
(k)
i (x, y, . . . , z) ∈ K(y, . . . , z)[x] (i=1, . . . , s), satisfying

F (x, y, . . . , z) ≡ F
(k)
1 (x, y, . . . , z) · · ·F (k)

s (x, y, . . . , z) (mod Sk+1),

F
(k)
i (x, y, . . . , z) ≡ Hi(x, y, . . . , z)mi (mod S1), i = 1, . . . , s.

(4.16)

Furthermore, F
(k)
1 , . . . , F (k)

s are polynomials in total-degree variable t.

Proof. Since gcd(F
(0)
i , F

(0)
j ) = 1 for any i 6= j and we have Lagrange’s interpolation

polynomials W
(l)
1 , . . . , W (l)

s (l = 1, . . . , d−1), we can perform the extended Hensel con-
struction with moduli Sk (k = 1, 2, . . .). Then, the theorem can be proved similarly as
Theorem 2. 2

Corollary 2 Each coefficient of term xextet in F
(k)
i is of the form N/D, where N and

D are homogeneous polynomials in y, . . . , z and tdeg(N)− tdeg(D) = et.

Example 6 Extended Hensel construction in C(y, z)[x].

F (x, y, z) = x3 + (y − z + z2)x2 − (y + z + y2 − z2)x + (y2 − z3).

Introducing the total-degree variable t, we find Newton’s polynomial F (0) = x3−t(y+z)x.
We see d̂ = 2 and δ̂ = 1, hence t̂ = t1/2.
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F (0) is factorized in C[x, y, z] as follows.

F (0)(x, y, z) = x× [x2 − t(y + z)].

We put F
(0)
1 = x and F

(0)
2 = x2−t(y+z). Lagrange’s interpolation polynomials W

(l)
1 ,W

(l)
2

(l=0, 1, 2) are calculated as follows.

W
(0)
1 =

−1

t(y + z)
, W

(0)
2 =

x

t(y + z)
,

W
(1)
1 = 0 , W

(1)
2 = 1 ,

W
(2)
1 = 0 , W

(2)
2 = x .

Note that W
(0)
1 t̂d−0 ∝ t̂ and W

(0)
2 t̂d−0 ∝ xt̂, W

(1)
2 t̂d−1 ∝ t̂2, W

(2)
2 t̂d−2 ∝ xt̂, in consistent

with the claim on degree of W
(l)
i t̂d−l in Lemma 5.

Ideals Sk (k=1, 2, . . .) are given by

Sk = (x, t1/2)3 × (t1/2)k = (x3tk/2, x2t(k+1)/2, xt(k+2)/2, t(k+3)/2).

Performing the Extended Hensel construction by one step, we obtain

∆F (1) ≡ F − F
(0)
1 F

(0)
2 (mod S2) = t(y − z) x2 + 0 x + t2y2.

F
(1)
1 = F

(0)
1 + W

(2)
1 t(y − z) + W

(0)
1 t2y2 = x− t

y2

y + z
,

F
(1)
2 = F

(0)
2 + W

(2)
2 t(y − z) + W

(0)
2 t2y2 = x2 − t(y + z) + xt

2y2 − z2

y + z
.

Performing one more construction, we obtain

∆F (2) ≡ F − F
(1)
1 F

(2)
2 ≡ xt2R2(y, z) (mod S3),

where R2(y, z) =
y4 − 2y3z − y2z2 + 2yz3 − z4

y2 + 2yz + z2
,

F
(2)
1 = F

(1)
1 + W

(1)
1 t2R2(y, z) = F

(1)
1 = x− t

y2

y + z
,

F
(2)
2 = F

(1)
2 + W

(1)
2 t2R2(y, z) = x2 − t(y + z) + xt

2y2 − z2

y + z
+ xt2R2(y, z).

Note that F
(2)
1 and F

(2)
2 are polynomials in t with coefficients of rational functions in

y, . . . , z, as Theorem 4 claims. 2

4.3 Introduction of algebraic functions

In this subsection, we consider factorizing F
(k)
i (x, y, . . ., z) (i=1, . . . , s) in (4.16) into

fractional-power series w.r.t. total-degree variable t. This factorization will be performed
similarly as described in 3.2, by introducing algebraic functions θ1, . . . , θr the minimal

20



polynomial of which is much simpler than F . Since this factorization is the same for each
F

(k)
i , 1 ≤ i ≤ s, we redefine F (x, y, . . . , z) as follows.

F (x, y, . . . , z) ∈ C(y, . . . , z)[x],

F (x, y, . . . , z) ≡ H(x, y, . . . , z)m (mod S1),
(4.17)

where the modulus S1 is defined by (4.10), and

H(x, y, . . . , z) ∈ C[x, y, . . . , z],

H(0, y, . . . , z) 6= 0, degx(H) = r ≥ 2.
(4.18)

(That is, we exclude the case of H = xm.) Furthermore, H is monic w.r.t. x, irreducible

over C hence square-free, and homogeneous w.r.t. x and t̂ = tδ̂/d̂.
Let the roots of H(x, y, . . . , z) |t=1 w.r.t. x be θ1, . . . , θr, hence

H(x, y, . . . , z) = (x− t̂θ1(y, . . . , z)) · · · (x− t̂θr(y, . . . , z)). (4.19)

Note that θi 6= θj for any i 6= j. The θi in (4.19) corresponds to ζi in (3.6). Contrary to the
bivariate case where ζi may be either an algebraic number or a complex number computed
approximately, we must introduce algebraic functions θ1, . . . , θr, with minimal polynomial
H(x, y, . . . , z), in the multivariate case. That is, we treat an algebraic extension field
C(y, . . . , z)(θ1, . . . , θr). We put

G
(0)
i (x, y, . . . , z) = (x− t̂θi(y, . . . , z))m, i = 1, . . . , r. (4.20)

Lemma 6 For each l ∈ {0, . . . , mr− 1}, there exist Lagrange’s interpolation polyno-

mials W
(l)
1 , . . . , W (l)

r which are polynomials in x, satisfying

W
(l)
1 [G

(0)
1 · · ·G(0)

r /G
(0)
1 ] + · · ·+ W (l)

r [G
(0)
1 · · ·G(0)

r /G(0)
r ] = xl,

degx(W
(l)
i (x, y, . . . , z)) < m, i = 1, . . . , r.

(4.21)

Each W
(l)
i , 1 ≤ i ≤ r, can be expressed as

W
(l)
i (x, y, . . . , z) = w

(l)
r−1(x, y, . . . , z)(t̂θi)

r−1 + · · ·+ w
(l)
0 (x, y, . . . , z)(t̂θi)

0,

w
(l)
j (x, y, . . . , z) ∈ C(y, . . . , z)[x], j = 0, . . . , r − 1.

(4.22)

(That is, w
(l)
j (j =0, . . . , r−1) are independent of index i.) Furthermore, W

(l)
i t̂mr−l is a

homogeneous polynomial in x and t̂.

Proof. We can calculate W
(l)
i (i=1, . . . , r) satisfying (4.21) by the extended Euclidean

algorithm, therefore the existence of W
(l)
i is assured.

For each l ∈ {0, . . . , mr − 1}, we express W
(l)
i as

W
(l)
i = w̃

(l)
i,m−1(t, y, . . . , z)xm−1 + · · ·+ w̃

(l)
i,0(t, y, . . . , z)x0, i = 1, . . . , r,

and determine the coefficients w̃
(l)
i,j (j = m−1, . . . , 0) as follows. For µ = 0, . . . , m − 1,

we calculate the µth derivative w.r.t. x, of both sides of upper equality in (4.21). This
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gives us m equations. Then, for each i ∈ {1, . . . , r}, we substitute t̂θi for x in these

m equations. This gives us a system of mr equations which are linear w.r.t. w̃
(l)
i,j . By

solving this system, we can determine w̃
(l)
i,j (i = 1, . . . , r, j = 0, . . . , m−1). Note that,

since H(x, y, . . . , z) is monic w.r.t. x, irreducible over C and H(t̂θj, y, . . . , z) = 0, we can

perform these calculations modulo H(t̂θj, y, . . . , z) (j =1, . . . , r). Thus, W
(l)
i is determined

to be a polynomial in x and t̂θj (j =1, . . . , r), with coefficients which are rational functions

in y, . . . , z, satisfying degx(W
(l)
i ) < m and degθj

(W
(l)
i ) < r.

Substituting t̂θi for x in the µth derivative of upper equality in (4.21), we obtain

dµ

dxµ
[W

(l)
i G

(0)
1 · · ·G(0)

r /G
(0)
i ]

∣∣∣∣∣
x=t̂θi

=
dµ

dxµ
xl

∣∣∣∣∣
x=t̂θi

(for µ = 0, no differentiation is made above),

(4.23)

because other terms contain factor (x − t̂θi) hence vanish by the substitution x → t̂θi.

Thus, W
(l)
i is determined by (4.23) only, with µ=0, . . . , m − 1. That is, we can express

W
(l)
i in terms of t̂θi only, without using t̂θj (j 6= i). Furthermore, since

dµ

dxµ
[G

(0)
1 · · ·G(0)

r /G
(0)
i ]

∣∣∣∣∣
x=t̂θi

=
1

m!

dm+µ

dxm+µ
[G

(0)
1 · · ·G(0)

r ]

∣∣∣∣∣
x=t̂θi

,

and G
(0)
1 · · ·G(0)

r = H(x, y, . . . , z)m, the linear system derived from (4.23), with µ =

0, . . . , m−1, is the same form for all the θi (i=1, . . . , r). Therefore, W
(l)
i can be expressed

as in (4.22).

That W
(l)
i t̂mr−l is a homogeneous polynomial in x and t̂ is a direct consequence of that

G
(0)
j (j =1, . . . , r) are so. 2

Example 7 Calculation of Lagrange’s interpolation “polynomials”.

F (x, y, z) = x3 − (y − z)x2 + (y + 2z + y2 − 2z2)x− (y + z − y2 − z2).

Newton’s polynomial for F is F (0) = x3 − t(y + z). Hence

H(x, y, z) = x3 − t(y + z) = (x− t̂θ1)(x− t̂θ2)(x− t̂θ3),

where t̂ = t1/3, θ1 = θ, θ2 = ωθ and θ3 = ω2θ, with θ = 3
√

y + z and ω = (−1 +
√

3i)/2,
a primitive cube root of 1. We put

G
(0)
i (x, y, z) = x− t̂θi, i = 1, 2, 3.

Following the method described in the above proof, we calculate W
(l)
i (l=0, 1, 2). Note

that, since m = 1, W
(l)
i is constant w.r.t. x and we have the case µ = 0 only. Thus, we

have only to solve the following single equation to calculate W
(l)
i :

W
(l)
i dH/dx

∣∣∣
x=t̂θi

= xl
∣∣∣
x=t̂θi

.
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Since (t̂θi)
3 − t(y + z) = 0, this equation gives us

W
(l)
i =

(t̂θi)
l

3(t̂θi)2
=

(t̂θi)
l+1

3t(y + z)
.

If l + 1 ≥ 3 the numerator can be reduced further. Thus, we obtain

W
(0)
i =

t̂θi

3t(y + z)
, W

(1)
i =

(t̂θi)
2

3t(y + z)
, W

(2)
i =

1

3
.

Using relations θ1 + θ2 + θ3 = 0, θ1θ2 + θ2θ3 + θ3θ1 = 0, and θ1θ2θ3 = y + z, we can easily
confirm that the above expressions satisfy (4.21). 2

Theorem 5 Let the extended Hensel construction of F (x, y, . . . , z) in (4.17), with

initial factors G
(0)
i (x, y, . . . , z) (i = 1, . . . , r) given in (4.20) and moduli Sk (k = 1, 2, . . .)

given in (4.10), be

F (x, y, . . . , z) ≡ G
(k)
1 (x, y, . . . , z) · · ·G(k)

r (x, y, . . . , z) (mod Sk+1),

G
(k)
i (x, y, . . . , z) ≡ G

(0)
i (x, y, . . . , z) (mod S1), i = 1, . . . , r.

(4.24)

Then, G
(k)
i (i=1, . . . , r) can be expressed as

G
(k)
i (x, y, . . . , z) = g

(k)
r−1(x, y, . . . , z)(t̂θi)

r−1 + · · ·+ g
(k)
0 (x, y, . . . , z)(t̂θi)

0,

g
(k)
j (x, y, . . . , z) ∈ C(y, . . . , z)[x], j = 0, . . . , r − 1.

(4.25)

(That is, g
(k)
j (j =0, . . . , r − 1) are independent of index i.)

Proof. We note that, using Lagrange’s interpolation polynomials W
(l)
i defined in (4.21),

we can perform the extended Hensel construction as expressed in (4.24).
Now, the theorem is apparently valid for k = 0. Suppose the theorem is valid up to the

(k−1)-st construction step (k ≥ 1). According to the procedure of Hensel construction,

G
(k)
i (i = 1, . . . , r) are calculated as follows: put G

(k)
i = G

(k−1)
i + ∆G

(k)
i , ∆G

(k)
i ≡ 0

(mod Sk), then calculate

∆F (k) ≡ F −G
(k−1)
1 · · ·G(k−1)

r (mod Sk+1)

≡ f
(k)
mr−1(y, . . . , z)xmr−1 + · · ·+ f

(k)
0 (y, . . . , z)x0,

and calculate ∆G
(k)
i as

∆G
(k)
i =

mr−1∑

l=0

W
(l)
i (x, y, . . . , z)f

(k)
l (y, . . . , z).

By the induction assumption, f
(k)
l (y, . . . , z) (l=0, . . . , mr−1) are symmetric w.r.t. t̂θ1, . . . ,

t̂θr, hence we can express f
(k)
l (y, . . . , z) without using t̂θ1, . . . , t̂θr. Then, Lemma 6 tells

us that G
(k)
i can be expressed as in (4.25). 2
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Example 8 Fractional-power series expansion of multivariate roots.

F (x, y, z) = x3 − (y − z)x2 + (y + 2z + y2 − 2z2)x− (y + z − y2 − z2).

This is the same polynomial as used in Example 7, hence we use the results in Example
7 and show only the Hensel construction step with moduli

Sk = (x, t1/3)3 × (t1/3)k = (x3tk/3, x2t(k+1)/3, xt(k+2)/3, t(k+3)/3).

We put t̂ = t1/3 and F
(0)
i = x− t̂θi (i=1, 2, 3). Then, we obtain

∆F (1) ≡ F − F
(0)
1 F

(0)
2 F

(0)
3 ≡ t(y + 2z)x (mod S2),

F
(1)
i = F

(0)
i + W

(1)
i t(y + 2z) = x− (t̂θi) +

y + 2z

3(y + z)
(t̂θi)

2.

We can confirm easily that the above construction is the same for i = 1, 2 and 3. We show
one more construction, where the calculation is done by using relations θ1 + θ2 + θ3 = 0,
θ1θ2 + θ2θ3 + θ3θ1 = 0, θ1θ2θ3 = y + z, and θ3

1 = θ3
2 = θ3

3 = y + z.

∆F (2) ≡ F − F
(1)
1 F

(1)
2 F

(1)
3 ≡ −t(y − z)x2 (mod S3),

F
(2)
i = F

(1)
i −W

(2)
i t(y − z) = x− (t̂θi) +

y + 2z

3(y + z)
(t̂θi)

2 − t(y − z)

3
.

In this way, we can construct F
(k)
i , k=1, 2, 3, . . ., as Theorem 5 claims. 2

4.4 Calculating the multivariate roots χ(y, . . . , z)

In this subsection, we consider factorizing F (x, y, . . . , z) into linear factors as

F (x, y, . . . , z) = (x− χ1(y, . . . , z)) · · · (x− χd(y, . . . , z)). (4.26)

Note that, although Example 8 above shows a calculation of multivariate roots, it is a
special case of m = 1 in (4.17). In order to calculate the roots of F (x, y, . . . , z) in general
case, we must consider the case of m ≥ 2 in (4.17). That is, we must consider calculating
the roots of G(x, y, . . . , z) such that

G(x, y, . . . , z) ∈ C(y, . . . , z)(θ)[x], t̂ = tδ̂/d̂,

G(x, y, . . . , z) ≡ (x− t̂θ)m (mod S1), m ≥ 2,
(4.27)

where t̂θ is a root of monic irreducible polynomial H(x, y, . . . , z) which is homogeneous
w.r.t. x and t̂, and S1 is defined in (4.10).

We will calculate the roots of G(x, y, . . . , z) similarly as explained in 3.3. That is, we
first perform the following transformation for G :

G(x, y, . . . , z) =⇒ G′(x, y, . . . , z) = G(x + t̂θ, y, . . . , z). (4.28)
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Then, renaming G′ as G for simplicity, we have

G(x, y, . . . , z) ∈ C(y, . . . , z)(θ)[x],

G(x, y, . . . , z) ≡ xm (mod S1), m ≥ 2,
(4.29)

and we encounter a problem which is similar to that treated in the previous subsections.
Only one difference is that G(x, y, . . . , z) is now a polynomial in x and t̂ over the algebraic
extension field C(y, . . . , z)(θ).

For G(x, y, . . . , z), we can draw Newton’s line and calculate Newton’s polynomial
G(0)(x, y, . . . , z), as defined in 4.2, because G is a polynomial in x and t̂. Furthermore, we
can define ideals S̄k (k=1, 2, . . .) as in (3.32), because S̄k is defined by only two variables x
and t̂. Then, we first factorize G(0)(x, y, . . . , z) in C(y, . . . , z)(θ)[x], as we have factorized
F (0)(x, y, . . . , z) as in (4.11), then factorize each factor of G(0) “formally” by introduc-
ing algebraic functions Θ1, . . . , Θρ, as we have introduced θ1, . . . , θr in (4.19). That is, we
treat an algebraic extension field C(y, . . . , z)(θ, Θ1, . . . , Θρ) as coefficient domain of factor
polynomials. Since the Euclidean algorithm works over this extension field, we can calcu-
late Lagrange’s interpolation polynomials and perform the extended Hensel construction
for G(x, y, . . . , z) with moduli S̄k (k =1, 2, . . .). Suppose that G(x, y, . . . , z) is factorized
by this construction as

G(x, y, . . . , z) ≡ G
(k)
1 (x, y, . . . , z) · · ·G(k)

ρ (x, y, . . . , z) (mod S̄k+1), (4.30)

then, as we have proved Theorem 5, G
(k)
i , 1 ≤ i ≤ ρ, is expressed as a polynomial w.r.t. θ

and Θi only, with coefficients of rational functions in y, . . . , z, where the coefficients are
independent of index i.

This process can be repeated, and we have the following theorem.

Theorem 6 Let F (x, y, . . . , z) ∈ K[x, y, . . . , z] be monic w.r.t. x and square-free.
Then, by repeated use of the extended Hensel construction, we can factorize F (x, y, . . . , z)
into the form (4.26). Let Θ(1), . . . , Θ(σ) be algebraic functions, where Θ1 (= θ) is an
algebraic function to be introduced first by the procedure mentioned above, with a min-
imal polynomial H(1)(x, y, . . . , z) over C(y, . . . , z), and Θ(j) (2 ≤ j ≤ σ), is an alge-
braic function to be introduced j-th, with a minimal polynomial H(j)(x, y, . . . , z) over
C(y, . . . , z)(Θ(1), . . . , Θ(j−1)). Then, each root χ(y, . . . , z) of F (x, y, . . . , z), w.r.t. x is ex-
pressed as a polynomial w.r.t. Θ(1), . . . , Θ(σ), where each coefficient is of the form N/D,
with N and D homogeneous polynomials in y, . . . , z and tdeg(N)− tdeg(D) ≥ 0.

Proof. Repeated applicability of the extended Hensel construction and the form of
each factor of F have been proved above, so we have only to prove that we obtain linear
factors finally. Suppose that we cannot factorize F into linear factors, then the above
discussions mean that F contains a factor of the form (x−χ)m, m ≥ 2, which contradicts
that F is square-free. 2

5 Concluding Remarks

We have shown in this paper that a slight extension of the generalized Hensel construc-
tion allows us to calculate the roots of multivariate polynomial F (x, y, . . . , z) in the same
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way as for bivariate polynomial F (x, y). The roots in multivariate case are expressed as
fractional-power series w.r.t. the total-degree, by using algebraic functions Θ(1), . . . , Θ(σ)

whose minimal polynomials are much simpler than the given polynomial. As we have
pointed in Remark 6, there is a good similarity between theories for bivariate and mul-
tivariate cases, when viewed w.r.t. the main variable x and the total-degree variable t.
This fact allows us to treat the multivariate case simply.

For bivariate polynomial F (x, y), one can use our method in two ways: one may treat
the roots ζ1, . . . , ζr of Newton’s polynomial F (0)(x, y) as algebraic numbers, or one may
calculate ζ1, . . . , ζr numerically hence approximately.

When ζ1, . . . , ζr are treated as algebraic numbers, the number of algebraic numbers
to be introduced by our method to represent a root will be much smaller than that by
Newton-Puiseux’s method. The reason is that our method introduces algebraic num-
bers systematically for all the roots and each root is expressed simply as in Theorem 5
which is valid in bivariate case, too. In this point, Kung-Traub’s method is not much
different from Newton-Puiseux’s method, because Kung-Traub’s method calculates each
root separately by employing the Newton polygon to determine the algebraic numbers,
as Newton-Puiseux’s method does.

When ζ1, . . . , ζr are calculated approximately, our method will be much more useful
than Newton-Puiseux’s method in that it is pretty safe against the numerical errors. If a
branch point PB is determined approximately as P = PB +δP , where P is an approximate
branch point with an error δP , then Newton-Puiseux’s method often gives the Taylor se-
ries expansion at P instead of Puiseux series expansion at PB. Hence, Newton-Puiseux’s
method is quit sensitive to the numerical errors. Our method is composed of three steps,
the first is to determine Newton’s polynomial and calculate Lagrange’s interpolation poly-
nomials. The second is to select terms by the ideal Sk+1 and perform the extended Hensel
construction. The third is to perform the transformation G(x, y) =⇒ G(x + ζt̂, y). Most
part of the computation is included in the second step which is safe against numerical er-
rors, because necessary terms are selected by the ideal Sk+1 definitely. Furthermore, other
two steps are not so dangerous, although numerical accuracy may be lost by cancellation
of almost the same numbers. In fact, Shiihara and Sasaki [SS96] applied our method with
floating-point number arithmetic to analytic continuation and Riemann surface determi-
nation of algebraic functions successfully.

When approximate arithmetic is employed, factorization in (4.11) may be not exact
but approximate. For such approximate factorization, conventional factorization algo-
rithm breaks down but we can apply approximate factorization algorithm by Sasaki et al.
[SSKS91].

One may think that our method is very complicated when applied to multivariate
polynomials, but this is not true: our method can be executed rather simply, as Exam-
ples 6 ∼ 8 show. We have not considered application of our method for multivariate
polynomials. We think, however, that if algebraic functions θ and Θ are expressed ex-
plicitly by radicals, such as θ = 3

√
y + z, then the roots obtained by our method will be

quite useful; they show analytic behaviors of algebraic functions χi(y, . . . , z) (i=1, . . . , d)
around a singular point rather well.

In order to apply our method, as well as methods for regular case, to many practical
problems, many investigations are necessary. In particular, error analysis of the methods
with floating-point number arithmetic is very important, and we have performed such an
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analysis partially for multivariate power series expansion of the roots of F (x, y, . . . , z),
see [SKK94].
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