Lascoux-Schützenbergerの算法による Hecke 環の線形表現 の構成

加古富志雄 複合現象科学専攻 複合情報科学講座

平成 18 年 11 月 30 日

概 要

In this paper, we will construct the W-graphs corresponding to the irreducible representation of Hecke algebra H(q, n). The algorithm used is based on Lascoux-Schützenberger's method. We have constructed all the irreducible representations of H(q, n) for n up to 17. The result show that the 0-1 conjecture for the value of $\mu(x, y)$, i.e. $\mu(x, y)$ should be 0 or 1, is not true. This means that the leading coefficients of the Kazhdan-Lusztig Polynomial may have values greater than 1.

1 はじめに

D. Kazhdan と G. Lusztig は、W-グラフを定義し、 A_{n-1} 型の Coxeter 群(もしくは対応する ヘッケ環 H(n,q))のすべての既約表現はW-グラフによって表されることを示した。Kazhdan 等 の定義した W-グラフを実際に求めるには、彼らの定義した多項式(Kazhdan-Lusztig 多項式)を 求める必要があるが、これを計算することは計算機を持ってしても非常に困難である。n = 6まで のH(q,n)に対して、Kazhdan-Lusztig 多項式が計算されているが、これ以上のnに対して求める ことは難しい。

これに対して、Lascoux と Schützenberger は、Kazhdan 等が定義した W-グラフに相当するグラフを構築する組み合わせ論的な算法を与えた。我々は、この算法を用いて H(q,n) に対する既約表現の計算を行った。

2 ヘッケ環とW-グラフ

2.1 ヘッケ環

群Wは、次の関係式を満たすとき、コクセタ群という。

 $W = (W, S) = < s \mid s^2 = 1, (st)^{m_{st}} = 1; s, t \in S, s \neq t >,$

ここで、 m_{st} は1より大きな整数である。 $(st)^{m_{st}} = 1$ を満たす整数 m_{st} が存在しなければ $m_{st} = \infty$ とする。

n次の対称群 S_n はコクセタ群である。 $s_i = (i, i+1)$ をiとi+1の互換とすると、 S_n は次のように表される。

$$S_n = \langle s_i \mid s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1; 1 \leq i, j < n, i \neq j \rangle,$$

ただし、

$$m_{ij} = \begin{cases} 2, \text{ if } j \neq i \pm 1, \\ 3, \text{ if } j = i \pm 1. \end{cases}$$

コクセタ群の要素 w に対して、w の長さ l(w) を、 $w = s_{i_1}s_{i_2}\cdots s_{i_r}$ と表した時の一番小さい長 さ r で定義する。コクセタ群の任意の要素 w は

$$w = s_{j_1} s_{j_1-1} \cdots s_{j_l-k_1} s_{j_2} s_{j_2-1} \cdots s_{j_2-k_2} \cdots s_{j_l} s_{j_l-1} \cdots s_{j_l-k_l},$$

ただし、 $j_1 < j_2 < \cdots < j_l$ 、 $0 \le k_i < j_i, i = 1, \dots, l$ 、の形で表すことができる。これは、wの最短表現になっている。以下では、これをwの簡約表現と呼ぶことにする。

コクセタ群 W と不定元 q に対して、次の関係式で定義される C-代数を Weyl 群 H(q, W) と言う。

$$H(q, W) = \langle T_s \mid T_s^2 = q \cdot 1 + (q - 1)T_s, T_sT_t = T_{st}; s, t \in W, l(s) + l(t) = l(st) \rangle$$

 $W = S_n$ としたとき、対応するヘッケ環を A_{n-1} 型のヘッケ環といい、H(q,n) と表すことにする。H(q,n) はまた次の関係式で定義される。

$$H(q,n) = \langle T_1, T_2, \dots, T_{n-1} | \qquad T_i^2 = (q-1)T_i + q,$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$$

$$T_i T_j = T_j T_i, \text{ if } |i-j| \ge 2 \rangle$$

各生成元 T_i , (i = 1, ..., n - 1) は標準生成元と呼ばれる。 $w \in W$ に対して、w の簡約表現を $w = s_{j_1}s_{j_2}\cdots s_{j_r}$ とすると、 $T_w = T_{j_1}T_{j_2}\cdots T_{j_r}$ と表される。

2.2 W-グラフ

H(q, W)をコクセタ群 W に随伴するヘッケ環とする。H(q, W)のある特別な基底のもとでの表現を求める。

定義 1 *W*-グラフ*G* = *G*(*V*, *I*, μ) とは、頂点の集合 *V* と、*V* の二つの要素からなる辺の集合 *Y* と、 それに加えて二つの関数 *I*(*x*) と $\mu(x, y)$ で構成される。*I*(*x*) は *V* の要素 *x* に対して、*S* の部分集 合を対応させる関数である。また、 $\mu(x, y)$ は {*x*, *y*} \in *Y* に対して整数値を対応させる関数である。

$$\tau_s(x) = \begin{cases} -x, & \text{if } s \in I(x), \\ qx + q^{\frac{1}{2}} \sum_{y \in X, s \in I(y)} \mu(x, y)y, & \text{if } s \notin I(x), \end{cases}$$

が E の自己準同型であるとき、 $G(X, I, \mu)$ を W-グラフと呼ぶ。このとき、 $\phi(T_s) = \tau_s, s \in S$ となるような、H の表現 $\phi: H \rightarrow End(E)$ が存在する。

例えば、(W,S) が A₃型のコクセタ群であるとき、V = { x_1, x_2, x_3 }, Y = {{ x_1, x_2 }, { x_2, x_3 }}, で、 $I(x_1) = {s_2, s_3}, I(x_2) = {s_1, s_3}, I(x_3) = {s_1, s_2}, \mu(x_1, x_2) = \mu(x_2, x_1) = \mu(x_2, x_3) = \mu(x_3, x_2) = 1$ とする。このとき、 $G(V, I, \mu)$ はW-グラフである。実際、 x_1, x_2, x_3 を基底とした行列 $\phi(T_{s_1}), \phi(T_{s_2}), \phi(T_{s_3})$ はそれぞれ、

$$\begin{pmatrix} q & 0 & 0 \\ q^{\frac{1}{2}} & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & q^{\frac{1}{2}} & 0 \\ 0 & q & 0 \\ 0 & q^{\frac{1}{2}} & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & q^{\frac{1}{2}} \\ 0 & 0 & q \end{pmatrix},$$

となる。

2.3 Kazhdan-Lusztig 多項式

多項式 f(q) に対して、 $\bar{f}(q) = f(q^{-1})$ と定義する。これを、ヘッケ環 H(q, W) の元 $h = \sum a_w T_w$ に対して次のように拡張する。すなわち、

$$\bar{h} = \sum \bar{a}_w T_{w^{-1}}^{-1}.$$

また、<は Bruhat の意味での順序とする。すなわち、 $w, y \in W$ に対して、y, wの簡約表現 $y = s_{i_1}s_{i_2}\cdots s_{i_r}, w = s_{j_1}s_{j_2}\cdots s_{j_t}$ が存在して、 $i_1i_2\cdots i_r$ が $j_1j_2\cdots j_t$ の部分列になっていると き、y < wであるとする。これによって、Wの要素間での半順序が決められる。

定理 1 (Kazhdan and Lusztig) 任意の $w \in W$ に対して、次の条件を満たす $C_w \in H(q, W)$ が 唯一決まる。

$$\bar{C}_w = C_w, \tag{1}$$

$$C_w = \sum_{y < w} (-1)^{l(y) + l(w)} q^{\frac{l(w)}{2} - l(y)} \bar{P}_{y,w} T_y.$$
⁽²⁾

ここで、 $P_{y,w}$ は q の多項式で、y < w のときその次数は $\frac{1}{2}(l(w) - l(y) - 1)$ に等しいかあるいはそ れ以下である。また、 $P_{w,w} = 1$ である。

上の定理で現れる多項式 P_{u,w} は Kazhdan-Lusztig 多項式と呼ばれる。

定義 2 y < w である $y, w \in W$ に対して、次の条件が満たされるとき、 $y \prec w$ という。

すなわち、l(w) - l(y)が奇数で、 $P_{y,w}$ はqの多項式で、その最高次数が $\frac{1}{2}(l(w) - l(y) - 1)$ に等しい。

このとき、 $P_{y,w}$ の主係数は整数であり、これを $\mu(y,w)$ と表す。また、 $w \prec y$ のとき、 $\mu(w,y) = \mu(y,w)$ と定義する。

いま任意のwおよび、w = sv, l(w) = l(v) + 1を満たす $s \in S$ に対して、

$$C_w = (q^{-\frac{1}{2}}T_s - q^{\frac{1}{2}})C_v - \sum_{z \prec v, sz < z} \mu(z, v)C_z,$$

によって C_w を定義すると、この C_w は s の取り方によらずただ一つ決まり、式 (1) と (2) を満た す。これから、

$$T_{s}C_{v} = \begin{cases} -C_{v}, & \text{if } sv < v, \\ qC_{v} + q^{\frac{1}{2}}C_{sv} + q^{\frac{1}{2}}\sum_{z \prec v, sz < z} \mu(z, v)C_{z}, & \text{if } sv > v, \end{cases}$$

が得られる。すなわち、 $\mu(z, v)$ は C_v を基底とする表現を与えている。このことより、ここで定義した $\mu(y, w)$ と

 $I(w) = \{ s_i \mid s_i w < w; s_i \in S \},\$

からなる三つ組 $G(W, I, \mu)$ はW-グラフを与える。

Kazhdan-Lusztig 多項式に関しては以下の性質が成り立つ。

- 1. *P_{v,w}* は *q* の多項式で、その定数項は1 である。
- 2. y < w, l(w) = l(y) + 1となる $y, w \in W$ に対して、 $P_{y,w} = 1_{\circ}$

- 3. y < w, l(w) = l(y) + 2 となる $y, w \in W$ に対して、 $P_{y,w} = 1_{\circ}$
- 4. $y \not\leq sw, sw < w$ となる $s \in S$ に対して、 $P_{y,w} = P_{sy,sw\circ}$
- 5. y < w, sw < w となる $s \in S$ に対して、 $P_{y,w} = P_{sy,w}$ 。
- 6. $P_{y,w} = P_{y^{-1},w^{-1}\circ}$
- 7. w_o をWの最長の元とする。このとき、 $P_{y,w_o} = 1$ 。

3 Lascoux と Schützenberger による算法

Kazhdan と Lusztig は、ヘッケ環の既約表現が彼らの定義した多項式を求めることで得られる ことを示したが、この多項式を実際に計算することは非常に困難である。これに対して、Lascoux と Schützenberger は組み合わせ論的な議論から W-グラフを計算する手続きを与えた。

実は、彼らが与えた算法は、n < 14 では正しい H(q, n) の W-グラフを与えるが、 $n \ge 14$ では、 正しい結果を与えない。我々は、n = 15 までの W-グラフを計算機で求めることで、このことを示 した。彼らの算法はほとんど正しい結果を与えるが、いくつかの辺が不足している。不足している 辺を追加することによって、正しい W-グラフが求められる。

ここでは、Lascoux と Schützenberger による算法と、それに対する修正した算法について説明 する。

3.1 ヤング図形

自然数nに対して、nの分割全体の集合 $\Lambda(n)$ を考える。つまり、

$$\Lambda(n) = \bigg\{ (\lambda_1, \lambda_2, \dots) \big| \sum_i \lambda_i = n, \lambda_i \in N, \lambda_i \ge \lambda_{i+1} (i \in N) \bigg\}.$$

そして、 $|\Lambda(n)|$ で $\Lambda(n)$ の要素の数を表す。 例えば、 $\Lambda(6)$ は11個の要素からなり、

 $\Lambda(6) = \{(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (3, 2, 1), (3, 2, 1), (3, 2, 1), (3, 2, 2), (3, 2), (3,$

 $(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1)\},\$

となる。

 $\Lambda(n)$ の要素 $Y = \{\lambda_1, \lambda_2, ..., \lambda_k\}$ に対して、その分割に従って、一段目には λ_1 個の箱を、二段 目には λ_2 個の箱を、...、 k 段目には λ_k 個の箱を横に並べた図形を作る。これをヤング図形と呼 ぶ。一つのヤング図形が与えられたとき、1 から n までの数をヤング図形の各箱に、行方向および 列方向に増加するように入れたものを、ヤング標準盤と呼ぶ。

例えば、ヤング図形 Y = {3,2,1} に対するヤング標準盤としては次に示す 16 個が存在する。

さらに、各ヤング標準盤から、各箱の数字を行方向に並べたものを作り、それを上の行から順に 1列に並べる。これを、標準盤に対するワードと呼ぶことにする。例えば、標準盤

のワードは 325146 になる。

上に示した $Y = \{3, 2, 1\}$ のワードは次のようになる。

 $\begin{array}{ll} x_1=325146, & x_2=425136, & x_3=435126, & x_4=524136, & x_5=534126, \\ x_6=326145, & x_7=426135, & x_8=436125, & x_9=526134, & x_{10}=536124, \\ x_{11}=546123, & x_{12}=624135, & x_{13}=634125, & x_{14}=625134, \\ x_{15}=635124, & x_{16}=645123. \end{array}$

ここで、例えば、*x*1 = 325146 から、置換

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

を作ると、これはヤング標準盤と対称群との対応を与える。

3.2 Lascoux と Schützenberger による W-グラフの算法

ここで、 $V = \{x_1, x_2, ..., x_s\}$ をヤング図形 Y で決まるワードの集合とする。V を頂点集合とするグラフ $G_{LS}(Y)$ をつぎのようにして作る。

1. $x = w_1 i w_2 j w_3$ と $x' = w_1 j w_2 i w_3$ を V の二つの相異なる頂点とする。ここで、i < j でかつ w_1, w_2, w_3 は x の部分列(空列でも構わない)。もし、 w_2 の中に i と j の間の数字を含まな いとき、頂点 x と x' を辺で結ぶ。 2. $x \in V$ に含まれる頂点とする。各 $i(1 \leq i \leq n-2)$ に対して頂点 $x^{(i)}$ を次のように決める。

$$x^{(i)} = \begin{cases} \text{is undefined}, & \text{if } x = w_1 i w_2 (i+1) w_3 (i+2) w_4, \\ & \text{or } x = w_1 (i+2) w_2 (i+1) w_3 i w_4, \\ \\ w_1 (i+1) w_2 (i+2) w_3 i w_4, & \text{if } x = w_1 i w_2 (i+2) w_3 (i+1) w_4, \\ \\ w_1 (i+2) w_2 i w_3 (i+1) w_4, & \text{if } x = w_1 (i+1) w_2 i w_3 (i+2) w_4, \\ \\ w_1 i w_2 (i+2) w_3 (i+1) w_4, & \text{if } x = w_1 (i+1) w_2 (i+2) w_3 i w_4, \\ \\ w_1 (i+1) w_2 i w_3 (i+2) w_4, & \text{if } x = w_1 (i+2) w_2 i w_3 (i+1) w_4, \end{cases}$$

ここで、 w_1, w_2, w_3, w_4 は x の部分ワードもしくは空列である。

 $G_{LS}(Y)$ の任意の二つの頂点 $x_1 \ge x_2$ について、もし、 $x_1 \ge x_2$ が辺で結ばれているならば、 $x_1^{(i)} \ge x_2^{(i)}$ を辺で結ぶ。

3. ステップ2を新たな辺がこれ以上付け加えられなくなるまで、繰り返す。

以上が、頂点集合 V に対して辺を構成する算法である。彼らの算法では、 $\mu(y,w)$ は辺があるかないかに応じて、1 あるいは 0 の値を取る関数として定義される。

また、I(x) は次のように定義する。V の各頂点 x 対して、I-不変量 I(x) をx に対応するヤング 標準盤から次のように定める。 $i \in I(x)$ となるのは、数字 i を含む行が、数字 i + 1 を含む行より 下にある場合のみに限る。例えば、

$$x = 645123 = \begin{array}{c} 6 \\ \hline 4 \\ \hline 5 \\ \hline 1 \\ 2 \\ 3 \\ \end{array},$$

に対する *I*(*x*) は {3,5} である。

いま、x = 645123に対応する対称群の元をwとすると、wの簡約した表現は、

 $w = s_1 s_2 s_3 s_2 s_1 s_4 s_3 s_2 s_5 s_4 s_3,$

となる。このwに対して、集合

 $\{s_i \mid ws_i < w\},\$

を考えると、これは $\{s_3, s_5\}$ となり、上で求めた I(x) と対応する。これは、Lascoux 等が定義した I(x) の群論的意味を与えている。

3.3 修正した算法

Lascoux 等の算法は、基本的には Kazhdan-Lusztig 多項式に関する次の性質に基づいている。

1. $P_{sw,w} = 1$ for $sw < w_{\circ}$

2. $P_{y,w} = P_{sy,sw}$ if $y \not< sw$ and $sw < w_{\circ}$

それに加えて、 $[\mu(y,w)]$ の値は0もしくは1に限る」という予想に基づいている。

我々は、基本的には Lascoux 等の算法は正しい辺を与えているが、不足している辺が存在する という仮定に基づき、追加すべき辺を探すよう算法を修正した。その一つは、例えば $\{5,4,2,2\}$ に 対して、それを拡張したヤング図形 $\{6,4,2,2\}, \{5,5,2,2\}, \{5,4,3,2\}, \{5,4,2,2,1\}$ もしくはより大 きな*n*に拡張したものに対して Lascoux の算法を適用してグラフの辺を求め、それを $\{5,4,2,2\}$ の場合に引き戻ることによって、新たな辺を見つけることである。

3.3.1 修正した算法1

次のステップを Lascoux 等の算法のステップ2に追加する。

 $x_1 = w_1(n-1)w_2nw_3, x_2 = w'_1(n-1)w'_2nw'_3$ の二つの頂点を結ぶ辺が存在するな ら、 $x_1 = w_1nw_2(n-1)w_3, x_2 = w'_1nw'_2n(n-1)w'_3$ に辺を結ぶ。ただし、 $w_i \ge w'_i$ 、 (i = 1, 2, 3)の長さは等しい。

これによって追加すべき辺のかなりの部分は求められる。しかしながら、これでも完全ではなくまだ辺が不足しているため、次のステップを追加する。

3.3.2 修正した算法 2

追加すべき辺の候補を調べ上げ、より大きいnに拡張したヤング図形を考えそこで Lascoux と Schützenberger の算法によって作成した W-グラフから、n = 14 あるいは n = 15 の場合に制限した W-グラフに候補の辺が含まれているかを調べ、含まれてい るならその辺を追加する。

 $n = 14 \ge 15$ の場合については、このようにして調べることによって、すべての必要な辺を見つけ出すことが可能である。

しかしながら、n > 15の場合には、これでもすべての辺を見つけ出すことは出来ない。(これ は、n > 15については十分大きなnに対して、Lascoux と Schützenberger の算法を適用すること が計算量から実行不可能であることも注意しておく。)

n > 15の場合には、追加すべき辺となる候補からヒューリステックに辺およびその重みを求めた。

4 ヘッケ環 H(q, n) の既約表現

ヘッケ環、*H*(*q*,*n*)の既約表現の計算方法は、まず前章で示した方法で、W-グラフ(その候補) を求める。得られた W-グラフから次の行列を計算する。

$$T_{j}(l,m) = \begin{cases} -1, & l = m \text{ and } j \in I(x_{l}), \\ q, & l = m \text{ and } j \notin I(x_{l}), \\ \sqrt{q}, & l \neq m, j \in I(x_{l}), j \notin I(x_{m}), \\ & x_{l} \text{ and } x_{m} \text{ are adjacent in } G(Y), \\ 0, & \text{otherwise.} \end{cases}$$

このとき、 $T_i(l,m), (1 \leq j \leq n-1)$ は、H(q,n)の既約表現を与える。

実際に、このようにして求めた行列 *T_j* がヘッケ環の関係式を満足しているかを確かめることで 正しい W-グラフが求められているかを確認した。

計算は、n = 18まで行っている。17までのnについては、すべての既約表現の計算は完了している。(n = 18の計算は完全には出来ておらず、16個の表現がまだ求められていない。しかし、これまでの計算結果からほぼ求められるであろうと思われる。)

n	14	15	16	17	18
既約表現の数	135	176	231	297	385
行列の最大次元	69498	292864	1153152	4873050	16336320

表 1:14から18までの n に対する既約表現の個数と線形表現での次元の最大

n = 14から 18 までのヘッケ環の表現の個数と表現行列の次元の最大を表 1 に示す。n = 18の時、次元は最大 16,336,320 であり、計算に必要な主記憶容量は 4GB になる。これは、32 ビットアドレスの計算機で処理できる限界である。

n	ヤンガ図形	次元	追加したエッジの数			
		50,70	オリジナル	修正版	修正版 2	
14	$\{5,4,3,2\}$	48048	68	4	0	
	$\{5,4,2,2,1\}$	68640	50	0	0	
	$\{6,5,4\}$	30030	8	8	0	
	$\{6,5,3,1\}$	128700	68	14	0	
15	$\{6,5,2,2\}$	100100	48	24	0	
	$\{6,4,3,2\}$	175175	322	18	0	
	$\{6,4,2,2,1\}$	243243	250	0	0	
	$\{5,5,4,1\}$	54054	48	24	0	
	$\{5,5,3,2\}$	96525	232	116	0	
	$\{5,5,2,2,1\}$	125125	110	55	0	
	$\{5,4,4,2\}$	81081	80	36	0	
	$\{5,4,3,3\}$	75075	100	10	0	
	$\{5,4,3,2,1\}$	292864	1720	220	0	

表 2: n = 14,15 での W-グラフの計算で、追加した辺の個数

n = 14,15の計算で追加した辺の個数を表 2 に示している。ここで追加した辺は、より大きい nに拡張したヤング図形を考えそこで Lascoux と Schützenberger の算法によって作成した W-グラ フから、n = 14 あるいは n = 15 の場合に制限した W-グラフにすべて含まれている。n = 14 に対 しては、n = 18 まで拡張した W-グラフに、また、n = 15 に対しては n = 20 まで拡張した W-グ ラフにすべて含まれている。

なお、この表および以下の表では、双対なヤング図形に対する結果は載せていない。例えば、 n = 14の場合では、ヤング図形 $\{4,4,3,2,1\}$ に対する結果 (W-グラフ) は、 $\{5,4,3,2\}$ の結果から 直ちに求めることが出来る。

n = 16の場合の計算では、驚くことに、辺の重みが1でないものが含まれている。 $\{5, 5, 3, 3\}$

に対しては、

$6AE59D248CG137BF \leftrightarrow DEG9AB256CF13478,$

および、これから Lascoux-Schützenberger の算法のステップ2を適用して生成される 15 個の辺に ついてその重みは5 である。また、{5,5,2,2,2} については、

$7E6B5A349DG128CF \leftrightarrow EGAB6734CDF12589$,

 $AE6D59348CG127BF \leftrightarrow EGAC68349DF1257B$,

 $9E8D5C347BG126AF \leftrightarrow EGCD8934ABF12567$,

およびこれらから生成される合計24個の辺についてその重みは2となる。

これは、Lascoux と Schützenberger が予想した

0-1予想: すべての辺の重み、すなわち $\mu(x, y)$ の値、は0もしくは1である。

が正しくないことを意味している。

また、重みが1である辺について、すべての追加辺がより拡張したヤング図形に対する W-グラフに含まれているかを確認することは出来なかった。表3には、*n* = 22 に拡張したヤング図形までを調べた結果を示している。

5 最後に

Lascoux と Schützenberger の算法をもとにして、n = 18 までのヘッケ環 H(q, n)の既約表現を 計算機で求めた。n = 18 については、まだ完全に求められず、次の表に示す 8 個の表現(および その双対グラフに対する表現)の計算が終わっていない。

ヤング図形	サイズ
$\{5,5,4,2,2\}$	4594590
$\{5,\!5,\!4,\!3,\!1\}$	5105100
$\{6,4,4,2,2\}$	6534528
$\{6,\!4,\!4,\!3,\!1\}$	7088796
$\{6,4,3,3,2\}$	7876440
$\{6,\!5,\!3,\!3,\!1\}$	8270262
$\{6,5,3,2,2\}$	9189180
$\{6,5,4,2,1\}$	10720710

しかしながら、これまでの計算に従えばほぼ求められるであろう。

n > 18の場合の既約表現の計算については、n = 19では次元の最大が約5千万で、n = 20では1億5千万ぐらいになることから、n = 20までの計算に必要なメモリ(主記憶)は64GBになると予想される。このため、限られた計算資源では計算不可能であろう。

n = 16およびそれ以上での計算結果から、 $\mu(x, y)$ の値は0または1に限らないことが結論された。これはまた、Kazhdan-Lusztig多項式の主係数が1以外の値を取ることを意味している。このことと、Lascoux と Schützenberger の算法がほとんど正しい結果を与えていることの意味についてより深く調べることが必要である。

最後に、本論文で行った計算は Apple PowerMac G5(主記憶 4GB) および総合情報処理センター の高速計算機 Fujitsu GP7000F(16 CPU,主記憶 8GB) を使用して行った。

参考文献

- A. Gyoja, On the Existence of a W-graph for an Irreducible Representation of a Coxeter Group, J. Algebra, 86 (1984), 422-438.
- [2] A. Gyoja, Topological Invariants of Links and Representations of Hecke Algebras, preprint.
- [3] A. Gyoja, Topological Invariants of Links and Representations of Hecke Algebras II, preprint.
- [4] P. Hoefsmit, Representations of Hecke algebras of finite group with BN pairs of classical type, Thesis University of British Columbia, Vancouver 1974.
- [5] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
- [6] A.Lascoux and M.P.Schützenberger, Polynomes de Kazhdan-Lusztig pour les grammanniennes, Asterisque, (1981), 87-88, 249-266.
- [7] A. M. Garsia and T. J. McLarnan, Relations between Young's Natural and The Kazhdan-Lusztig Representation of S_n, Advances in Mathematics, 69, 32-92, (1988).
- [8] Shi Jian-Yi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Math. 1179, Springer-Verlag, (1986).
- [9] M. Ochiai and F. Kako, Computational Constructions of W-graphs of Hecke algebras H(q, n)for n up to 15, Experimental Math. 4 (1995), 61-67.
- [10] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, Inv. Math., 118 (1992), 371-394.

n	ヤンガ図形	次元	追加したエッジの数				
11		火九	オリジナル	修正版	修正版 2		
	$\{7,6,3\}$	91520	20	10	0		
	$\{7,5,4\}$	100100	88	78	0		
	$\{7,5,3,1\}$	416988	298	63	0		
	$\{7,5,2,2\}$	320320	212	106	0		
	$\{7,4,3,2\}$	512512	962	50	0		
	$\{7,4,2,2,1\}$	698880	778	0	0		
	$\{6, 6, 4\}$	51480	12	12	0		
	$\{6,6,3,1\}$	200200	148	104	0		
	$\{6, 6, 2, 2\}$	150150	100	100	44		
16	$\{6,5,5\}$	36036	8	8	0		
	$\{6,5,4,1\}$	292864	728	332	0		
	$\{6,5,3,2\}$	500500	3732	916	20		
	$\{6,5,3,1,1\}$	648648	410	91	0		
	$\{6,5,2,2,1\}$	630630	1358	409	0		
	$\{6,4,4,2\}$	336336	790	344	16		
	$\{6,4,3,3\}$	300300	660	79	0		
	$\{6,4,3,2,1\}$	1153152	8694	1138	0		
	$\{6,4,2,2,2\}$	480480	638	319	0		
	$\{6,4,2,2,1,1\}$	928746	1374	0	0		
	$\{5,5,5,1\}$	60060	48	48	0		
	$\{5,5,4,2\}$	231660	954	585	0		
	$\{5,5,4,1,1\}$	280280	494	243	0		
	$\{5,5,3,3\}^{\dagger}$	171600	496	290	182		
	$\{5,5,3,2,1\}$	640640	5512	1764	0		
	$\{5,5,2,2,2\}^{\ddagger}$	250250	258	258	84		
	$\{5,4,4,3\}$	180180	510	249	0		
	$\{5,4,4,2,1\}$	549120	4302	1115	8		

表 3: n = 16 での計算で追加した辺の個数。 $\{5,5,3,3\}^{\dagger}$ では、追加した辺の中で、その重み $\mu(x, y)$ を 5 とするものが 16 辺含まれる。また、 $\{5,5,2,2,2\}^{\ddagger}$ では、重みを 2 とするものが 24 辺含まれている。

n	ヤング図形	次元	追加した辺の数					
11		次几	重み1	重み 2	重み3	重み4	重み5	
	$\{8,6,3\}$	272272	76	0	0	0	0	
	$\{8,5,4\}$	272272	340	0	0	0	0	
	$\{8,5,3,1\}$	1113840	830	0	0	0	0	
	$\{8,5,2,2\}$	848640	594	0	0	0	0	
	$\{8,4,3,2\}$	1299480	2298	0	0	0	0	
	$\{8,4,2,2,1\}$	1750320	1918	0	0	0	0	
	$\{7,7,3\}$	121550	20	0	0	0	0	
	$\{7,\!6,\!4\}$	243100	320	0	0	0	0	
	$\{7,\!6,\!3,\!1\}$	918918	1788	0	0	0	0	
	$\{7,\!6,\!2,\!2\}$	680680	886	0	0	0	0	
	$\{7,5,5\}$	136136	140	0	0	0	0	
	$\{7, 5, 4, 1\}$	1050192	4438	0	0	0	0	
17	$\{7,5,3,2\}$	1750320	16050	0	0	0	0	
	$\{7,5,3,1,1\}$	2255526	2004	0	0	0	0	
	$\{7, 5, 2, 2, 1\}$	2165800	5770	0	0	0	0	
	$\{7,4,4,2\}$	1089088	3086	0	0	0	0	
	$\{7,\!4,\!3,\!3\}$	952952	2314	0	0	0	0	
	$\{7,4,3,2,1\}$	3620864	28330	0	0	0	0	
	$\{7,4,2,2,2\}$	1485120	2230	0	0	0	0	
	$\{7,\!4,\!2,\!2,\!1,\!1\}$	2858856	4662	0	0	0	0	
	$\{6,\!6,\!5\}$	87516	23	0	0	0	0	
	$\{6, 6, 4, 1\}$	544544	1762	0	0	0	0	
	$\{6,\!6,\!3,\!2\}$	850850	8534	0	0	0	0	
	$\{6, 6, 3, 1, 1\}$	1089088	994	0	0	0	0	
	$\{6, 6, 2, 2, 1\}$	1021020	2446	0	0	0	0	
	$\{6,5,5,1\}$	388960	1080	0	0	0	0	
	$\{6,5,4,2\}$	1361360	21864	0	0	8	32	
	$\{6,5,4,1,1\}$	1633632	7136	0	0	0	0	
	$\{6,5,3,3\}$	972400	10586	0	0	0	112	
	$\{6,5,3,2,1\}$	3573570	69786	0	0	0	0	
	$\{6,5,3,1,1,1\}$	2475200	1474	0	0	0	0	
	$\{6,5,2,2,2\}$	1361360	3944	120	0	0	0	
	$\{6,5,2,2,1,1\}$	2598960	7556	0	0	0	0	

表 4: n = 17 での計算で追加した辺の個数。

n	ヤング図形	次元	追加した辺の数					
			重み1	重み 2	重み3	重み4	重み5	
17	$\{6,4,4,2,1\}$	2450448	33068	0	0	0	0	
	$\{6,4,3,3,1\}$	2362932	27668	0	0	0	0	
	$\{6,4,3,2,2\}$	2722720	30098	0	0	0	0	
	$\{6,4,3,2,1,1\}$	4873050	48256	0	0	0	0	
	$\{6,3,3,3,2\}$	1089088	1934	0	0	0	0	
	$\{5,5,5,2\}$	291720	1084	0	0	0	0	
	$\{5,5,5,1,1\}$	340340	744	0	0	0	0	
	$\{5,5,4,3\}$	583440	5230	0	0	0	80	
	$\{5,5,4,2,1\}$	1701700	34716	0	0	4	20	
	$\{5,5,3,3,1\}$	1361360	18486	0	16	0	360	
	$\{5,5,3,2,2\}$	1531530	21124	360	0	0	8	
	$\{5,4,4,4\}$	204204	470	0	0	0	0	
	$\{5,4,4,3,1\}$	1458600	22780	0	0	50	44	

表 5: n = 17 での計算で追加した辺の個数。(続き)