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Abstract. We discuss the term cancellation which makes the floating-
point Gröbner basis computation unstable, and show that error accumu-
lation is never negligible in our previous method. Then, we present a new
method, which removes accumulated errors as far as possible by reducing
matrices constructed from coefficient vectors by the Gaussian elimina-
tion. The method manifests amounts of term cancellations caused by
the existence of approximate linearly dependent relations among input
polynomials.

1 Introduction

Although floating-point Gröbner bases are indispensable in scientific computa-
tion, they have been scarcely used so far. The reason is that the computation is
so unstable that it is very difficult to obtain desired results.

There are two kinds of floating-point Gröbner bases. The first kind is that the
coefficients of the input polynomials are exact (say algebraic numbers or tran-
scendental numbers) but we utilize the floating-point numbers for some reasons.
The second kind is that the coefficients of input polynomials are inexact hence
we inevitably express the coefficients by floating-point numbers. If the numeri-
cal errors increase during the computation, we can replay the computation with
higher precision for the first kind, however, for the second kind, we must devise a
method to preserve the initial accuracies of input polynomials as far as possible.
In this paper, we deal with the second kind. We should emphasize that, since
the errors in the input polynomials are unknown, the algorithm should return
the bases which do not critically depend on the input errors.

The first kind of floating-point Gröbner bases were studied by Shirayanagi
and Sweedler [16–18]. The second kind of floating-point Gröbner bases were stud-
ied by Stetter [19], Kalkbrener [6], Fortuna, Gianni and Trager [3], Traverso and
Zanoni [24], Traverso [23], Weispfenning [25], Kondratyev, Stetter and Winkler
[8], Gonzalez-Vega, Traverso and Zanoni [4], Stetter [21], Bodrato and Zanoni
[1], and so on. Recently, Suzuki [22] and Nagasaka [11] proposed to compute
Gröbner bases by reducing large numerical matrices by Gaussian elimination. In



spite of these studies, computation of floating-point Gröbner bases of the second
kind has been a serious problem; the computation was so unstable in most cases
if performed naively. This seriousness forced European researchers to study the
so-called “border bases” [9, 10, 5], see also [2].

The key point of stabilizing the floating-point Gröbner basis computation is
how to control the errors caused by term cancellation; see Sect. 2 for details.
We classify the term cancellation into two classes, systematic and accidental.
These four years, the present authors have studied this theme and presented the
symbolic coefficient method [14] and the high-precision method [15]. The high-
precision method is quite stable and useful so long as the accidental cancellations
do not occur. However, the method has a weakness: although the coefficients are
computed pretty accurately, the estimation of intrinsic errors occurred on the
coefficients is very bad. Here, by “intrinsic errors” we mean errors caused by
ill-conditionedness of the input basis, which cannot be reduced by the compu-
tational techniques. For example, suppose there exists an approximate linearly
dependent relation among input polynomials, then, when the relation is com-
puted, the errors of its coefficients will inevitably be increased. Knowing the
amounts of intrinsic errors is very important for the Gröbner bases with inex-
act coefficients. Therefore, we want to develop a method which informs us the
amounts of intrinsic errors. In this paper, we present such a method. The idea is
to improve the estimation of errors of polynomials which are computed by our
previous method, by reducing coefficient matrices by Gaussian elimination.

Since many readers will be unfamiliar with the phenomenon of term cancel-
lation, we will explain our method as elementally as possible using examples.

2 Term cancellation and its monitoring

By F , G, etc., we denote polynomials in IF[x, y, . . . , z], where IF denotes the
floating-point numbers of a fixed precision. By ‖F‖ we denote the norm of F ;
we employ the infinity norm in this paper. The power product is the product of
powers of variables. By supp(F ) we denote the support of F , i.e., the set of all
the power products appearing in F . By lt(F ) and rt(F ), we denote the leading
term and the rest terms, of F , respectively, with respect to a given order Â;
F = lt(F ) + rt(F ). By Spol(F,G) and Lred(F,G), we denote the S-polynomial
of F and G and the leading-term reduction of F by G, respectively. We express
Lred(F,G) also as F

G−→. By F
G−→→ F̃ , we denote successive leading-term

reductions of F by G so that lt(F̃ ) is no longer reducible by G.
If the error of a floating-point number f starts at the (l+1)-st bit then we say

that the accuracy of f is 1/2l, and we call the leading l bits the significant ones.
Let c1T and c2T be monomials, where c1, c2 ∈ IF. If leading l bits of c1 and c2 are
the same but the (l+1)-st ones are not then the l bits are lost in the subtraction
c1T − c2T . We call this term cancellation of amount 2l, and the relative error of
c1−c2 increases by 2l compared with c1 and c2. If the resulting c1−c2 has no
significant bit then we call the cancellation exact, otherwise inexact. If the term
cancellation is exact, we call the resulting term (c1−c2)T a fully-erroneous term.



We may classify the term cancellation as follows.
systematic

{
exact cancellation

inexact cancellation

accidental

{
exact cancellation

inexact cancellation

We explain the difference between systematic and accidental cancellations. Let
a polynomial Q be contained in both P1 and P2 such as Pi = P ′

i +ciQ (i = 1, 2).
If c1 ' c2 then c1Q and c2Q cancel in the subtraction P1−P2. This is a typical
systematic cancellation. The cancellation is exact if c1 and c2 cancel exactly,
otherwise the cancellation is inexact. We also call the case ‖P1−P2‖ ¿ ‖P1‖
systematic cancellation. This case occurs, for example, if there exists an approx-
imate linear dependence among polynomials in the initial or intermediate bases.
Let P1 and P2 contain c1T and c2T , respectively, where these terms originate
from different initial terms. If c1 ' c2 then the term cancellation occurs in the
subtraction P1−P2. This is the accidental cancellation. The actual term cancella-
tion is complicated because other term c′T may be mixed before the subtraction
of c1T and c2T . We call (c1+c′)T−c2T and c1T−c2T the term cancellation with
and without mixing, respectively.

The systematic exact cancellation occurs frequently in polynomial linear al-
gebra, such as the computation of determinants with polynomial entries and the
polynomial remainder sequences. Similarly, it occurs frequently in the computa-
tion of Gröbner bases, as shown in [14, 15, 13]. If the systematic exact cancellation
is caused by polynomials with small leading terms, we usually encounter large
cancellation errors. On the other hand, the accidental cancellation occurs rarely,
especially if the input polynomials are generated randomly or determined by
experiments. In the rest of this section, we survey our previous work briefly.

If a fully-erroneous term appears as the leading term then the subsequent
computation becomes meaningless. Therefore, we must remove the fully-erroneous
terms completely. So far, two ideas have been proposed to do so. Shirayanagi
[16–18] proposed to represent the input coefficients by intervals and remove the
fully-erroneous terms by replacing the interval by 0 if it contains 0. The present
authors devised the so-called effective floating-point numbers, or efloats in short
[7], so as to detect the cancellation errors automatically but approximately. We
represent the efloat number as #E(f, e), where f is a floating-point number
representing the value of this number, and e is a short floating-point number
representing the error of f . We call f and e as value-part and error-part, respec-
tively. For the arithmetic of efloats, see [7].

Let εcal be the precision of floating-point numbers employed; we have εcal '
2×10−16 in the double-precision arithmetic. In our algebra system, the error-part
of efloat is set slightly larger than εcal|f |: we set e to 10−15|f | in the double-
precision arithmetic, and to 100 εcal|f | in the high-precision arithmetic. If the
input coefficient f contains relative error εinit, then we may set the error-part
to 5 εinit|f |, say. Our algebra system sets the efloat #E(f, e) to 0 if |f | < e.



The exact term cancellation with mixing is not so simple. Suppose we have
|c1| À c′ in ((c1+c′)−c2)T , then the cancellation of amount |c1/c′| occurs in the
resulting c1+c′−c2. Fortunately, if the exact cancellation is systematic, we can
preserve the initial accuracy in c1+c′−c2. The idea is to convert all the input
coefficients to high precision floating-point numbers [15]. Then, since c1 and c2

originate from a single coefficient c of an input polynomial, their errors are the
same initially and subsequent computation contaminates only some lower bits
of them. Suppose ` lower bits of c1 and c2 are contaminated at most. Then, the
significant part of c′ is safe so long as the precision has been increased initially
by more than 2`. This is the essence of the high-precision method.

3 Accidental cancellations and current problems

In this section, we consider accidental cancellations. For simplicity, we assume
that the input coefficients are accurate to εinit at most; if the coefficients are of
different accuracies, we set εinit to the maximum of the accuracies. It is natural
to assume that εinit À εcal.

If accidental exact cancellation without mixing occurs then all the bits above
εinit are lost. The resulting term is also fully-erroneous, and we must remove such
terms, too. This removal can be done easily if we represent coefficients by efloats.
Suppose the accidental exact cancellation occurs in c1T −c2T , hence c1−c2 is
fully-erroneous. Since c1 and c2 originate from different coefficients, c1−c2 will
be a number of relative error ∼ εinit, and we assumed that εinit À εcal. We can
detect this fully-erroneous term by monitoring the corresponding efloat. Thus,
we can remove such a fully-erroneous term by replacing an efloat #E[f, e] by 0
if we have |f | < ngεinit e/(100 εcal), where ng is a guard number, say 10.

Example 1 (Fully-erroneous term by accidental exact cancellation). We consider
the following system with the lexicographic order.

F1 =x2 (2yz + 1)/2.0,

F2 =(x (3xz − 2) − (2yz + 1))/3.0,

F3 =(yz (3xz − 2))/2.0.

We first convert the coefficients into double-precision floats. Note that F3 is input
by dividing by 2.0, not by 3.0. This artificial trick introduces different errors into
yz terms of F2 and F3. Computing the floating-point Gröbner basis by the high-
precision method with 30 decimal precisions, we obtain { 1 }. Investigating the
computation process, we found the following intermediate polynomial.

#E(8.43749999999999945356 · · · e−1, 4.2e−28) x2z
− #E(3.70074341541718836536 · · · e−17, 6.7e−28) xy2

+ #E(1.12499999999999994795 · · · e−0, 3.0e−28) xyz
+ · · · · · ·

The above second term is fully erroneous, caused by the accidental cancellation.
This term is very small but the result depends on it critically. ¤



We show a weakness of our previous method by an example.

Example 2 (Large errors in the result). We computed an unreduced Gröbner
basis w.r.t. the total-degree order, of the above system, obtaining

G1 = #E(9.99999999999999999999 · · · e−1, 1.9e−25) x
+ #E(1.33333333333333348136 · · · e−0, 2.5e−25) y,

G2 = #E(9.99999999999999999999 · · · e−1, 1.0e−28) yz
+ #E(5.81395348837208978910 · · · e−2, 3.7e−27) x
+ #E(7.75193798449612428019 · · · e−2, 4.9e−27) y
+ #E(5.00000000000000019525 · · · e−1, 6.7e−27).

G2 can be reduced by G1 and we obtain the same Gröbner basis as that in
Example 1. We, however, find that the errors of the above result are large com-
pared with those in Example 1; error-parts of G1 are about 103 larger than its
initial values (the value-parts are accurate to O(10−16) relatively.) The origin of
these large errors can be understood by considering syzygies (ai1, ai2, ai3) for Gi

(i=1, 2): Gi = ai1F1+ai2F2+ai3F3. Normalizing the leading coefficients of G1 to
1, we find that a11, a12, a13 contain 49, 54 and 40 terms, of norms 5109/5, 560 and
4439/10, respectively, and we have max{‖a11F1‖, ‖a12F2‖, ‖a13F3‖} = 10218/5.
The largeness of ‖aij‖ (1 ≤ i ≤ 2; 1 ≤ j ≤ 3) implies that, during Buchberger’s
procedure, corresponding polynomials are multiplied by large monomials but
they will cancel later because the final polynomials are of norm O(1). Therefore,
big errors were induced in the final basis. ¤

Summarizing the above discussions, we have the following problems to solve.
1) Remove the errors caused by accidental exact cancellation with mixing.
2) Remove the errors caused by accidental inexact cancellation.

Furthermore, in our high-precision method, small cancellation errors accumulate
gradually but steadily to error-parts of efloats, as Example 2 shows. Therefore,
we must solve the following problem, too.

3) Reduce the gradually accumulating errors as far as possible.

4 Our idea: reduce the errors by a matrix method

In this paper, we restrict the reduction of polynomials only to the leading-term
reduction: we compute the Gröbner bases by constructing S-polynomials and
performing only the leading-term reductions successively. If we need the reduced
Gröbner basis then we perform the reduction of non-leading terms after com-
puting an unreduced Gröbner basis.

The problems given in Sect. 3 are quite difficult to solve algebraically. For
example, the problem 3) is inevitable so long as Buchberger’s procedure is em-
ployed. We note that problems 1) and 2) are common in numerical computation,
and numerical analysts developed excellent techniques to suppress the increase
of errors. In the case of matrix computation, the QR-decomposition is one of
such techniques. On the other hand, our high-precision method can compute



floating-point Gröbner bases stably. Therefore, we will reduce numerically the
errors of the results computed by the high-precision method.

Let Φk = {F (k)
1 , . . . , F

(k)
r } and Φl = {F (l)

1 , . . . , F
(l)
s } be intermediate bases

appearing in the computation of Gröbner basis by Buchberger’s procedure, where
Φk is a basis computed before Φl (Φk may be the initial basis). Then, each
polynomial F

(l)
i in Φl can be expressed in terms of the elements of Φk, as follows:

F
(l)
i = ai1F

(k)
1 + · · · + airF

(k)
r . (1)

We call the tuple (ai1, . . . , air) a syzygy for F
(l)
i . In order to reduce the errors

occurred during the computation from Φk to Φl, we utilize the syzygies.
Let Ri (1 ≤ i ≤ s) and Cij (1 ≤ j ≤ r) be sets of power-products defined as

follows.

Ri = ∪r
j=1supp(aijF

(k)
j ) def= {T1, T2, . . . , Tn̄}, T1 Â T2 Â · · · Â Tn̄,

Cij = supp(aij)
def= {Sij,1, Sij,2, . . . , Sij,mj}, Sij,1 Â Sij,2 Â · · · Â Sij,mj .

(2)

We express F
(l)
i and F

(k)
j as follows.

F
(l)
i = f

(l)
i1 Ti1 + f

(l)
i2 Ti2 + · · · , Ti1 Â Ti2 Â · · · ,

F
(k)
j = f

(k)
j1 Tj1 + f

(k)
j2 Tj2 + · · · . Tj1 Â Tj2 Â · · · .

(3)

Since {Sij,mTj1, . . . , Sij,mTjnj} ⊂ {T1, T2, . . . , Tn̄} for any j ∈ {1, . . . , r} and
m ∈ {1, . . . ,mj}, (1) assures that we can express the coefficient vector of F

(l)
i

in terms of a sum of coefficient vectors of Sij,mF
(k)
j (1 ≤ j ≤ r; 1 ≤ m ≤ mj),

expanded in power-products T1, T2, . . . , Tn̄.
We put m̄ = m1 + · · · + mj . We define an m̄ × n̄ matrix Mi, which we call

reduction matrix, as follows.

Mi =



coefficient vector of Si1,1F
(k)
1

coefficient vector of Si1,2F
(k)
1

. . . . . . . . . . . .
coefficient vector of Si2,1F

(k)
2

coefficient vector of Si2,2F
(k)
2

. . . . . . . . . . . .
...

...
...

...
...


(4)

Let M(L)
i be the submatrix of Mi, composed of the columns located in the left

side of the power product Ti1. We eliminate the columns of M(L)
i , by transform-

ing the rows of Mi simultaneously. This elimination gives us a row of Mi, of
the form (0, . . . , 0, ?, ∗, . . . , ∗), where ? is not zero and it stands at Ti1, while ∗
may be zero. Then, (?, ∗, . . . , ∗) is a coefficient vector of F

(l)
i .



Example 3 (Reduction matrix M2 for G2 in example 1). The G2 was computed

as F1
F2−→ F ′

1, F2
F ′

1−→ F ′
2, F3

F ′
2−→ F ′

3, F ′
2

F ′
3−→ G2. The corresponding syzygy is

(a2,1 = −3yz2 + 3/2z, a2,2 = 2y2z2 − 1/2, a2,3 = 4/3y). By this, we can easily
obtain the following minimal power-product set for G2:

R2 = (x2y2z3, x2yz2, x2z, xy2z2, x, y3z3, y2z2, y2z, yz, 1)

Then, the reduction matrix M2 for G2, expressed by F1, F2, F3, is as follows.
x2y2z3 x2yz2 x2z xy2z2 x y3z3 y2z2 y2z yz 1

yz2F1 1.0 0.5
zF1 1.0 0.5

y2z2F2 1.0 −2/3. −2/3. −1/3.
1F2 1.0 −2/3. −2/3. −1/3.
yF3 3/2. −1.0


Here, M(L)

2 is the matrix composed of the left four columns. ¤

Remark 1. It is obvious that the rows in M(L)
i are linearly dependent. However,

the dimension of null space may be greater than 1. Even if the dimension is
1, the corresponding vector in Mi may be different from the coefficient vector
of F

(l)
i , because the matrix reduction is rarely the same as the corresponding

reductions in Buchberger’s method. ¤
Our idea solves problem 3). The systematic exact cancellation is analogous

to that occurs in naive Gaussian elimination of numerical matrices: if a row of
small pivot is used to eliminate columns then there occur large cancellations in
subsequent eliminations. We can avoid such cancellations almost completely by
pivoting. We show this by Example 4, below. Furthermore, the matrix method
mentioned above decreases the risk of accidental cancellations largely.

Example 4 (Reducing the errors in G1, G2 in Example 2). Eliminating reduction
matrices for G1, G2, we obtained the following improved G1, G2.

G1 = x + #E(1.333333333333333407348201641677e−0, 2.7e−28) y

G2 = yz + #E(4.999999999999999722444243843710e−1, 1.0e−28)x
+ #E(6.666666666666666666666666666666e−1, 1.3e−28) y
+ #E(5.000000000000000000000000000000e−1, 1, 5e−29) .

Almost no cancellation occurred in the computation of the above G1, G2. ¤
Remark 2. The above G2 is different from that in Example 2. The matrix M2

for G2 is of size 112× 88, and 84 columns are eliminated. When the elimination
finished, we have 21 nonzero rows (the left 84 elements are zero). These 21 rows
are linear combinations of the following two vectors

( 0 · · · 0 3.30 · · · 0.00 0.00 1.65 · · · ),
( 0 · · · 0 0.00 3.60 · · · 4.80 · · · 0.00 ).

These vectors correspond to yx+1/2 and x+4/3y, respectively. Hence, the ideal
itself is the same. ¤



Example 5 (Case of large systematic exact cancellation). We compute an unre-
duced Gröbner basis w.r.t. the total-degree order, of the following system.F1 = x3/30.0 + x2y + y2/3.0,

F2 = x2y2/3.0 − xy2 − xy/3.0,
F3 = y3/20.0 + x2.

The high-precision method gives us the following unreduced Gröbner basis.

G2 = #E(9.99999999999999999999 · · · e−1, 1.7e−18) y2,
G4 = #E(9.99999999999999999999 · · · e−1, 2.2e−19) xy

+ #E(8.44022550452195867628 · · · e−2, 1.8e−20) y2,
G5 = #E(9.99999999999999999999 · · · e−1, 1.0e−28) x2

+ #E(7.14849689746270700639 · · · e−0, 1.7e−18)xy
+ #E(5.73716139524645722576 · · · e−1, 1.3e−19) y2.

We see that there occurred large cancellations of amounts O(1010). Applying the
matrix method, we obtained the following result (we omit G2).

G4 = xy + #E(8.44022550452195867628 · · · e−2, 3.7e−29) y2,

G5 = x2 + #E(7.14849689746270700639 · · · e−0, 3.6e−26)xy
+ #E(5.73716139524645722576 · · · e−1, 2.7e−27) y2.

We see that the error-parts of the efloats are improved drastically. (The value-
parts are the same up to the double-precision, showing that the high-precision
method is trusty). ¤

We next consider intrinsic errors. From the viewpoint of matrix method,
the intrinsic errors are regarded as errors occurring in reducing ill-conditioned
matrices, hence they cannot be reduced by the matrix method; we need some
pre-conditioning operation to reduce the errors.

Example 6 (Case of intrinsic errors). We compute an unreduced Gröbner basis
w.r.t. the total-degree order, of the following system. Note that we have the
relation ‖56/57 yzF1 − 57/56xzF3 − 2F2‖ = 0.000041.F1 = 57/56x2y + 68/67 xz2 − 79/78 xy + 89/88 x,

F2 = xyz3 − xy2z + xyz,
F3 = 56/57xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y.

Using the high-precision method of 30 decimal precision, we found that the
following polynomials were generated in the computation.

G6 = #E(9.99999999999999999999 · · · e−1, 1.23e−23) x2y2

− #E(2.99543694773255264453 · · · e−0, 3.68e−23)xy2

− #E(1.00207821651237482576 · · · e−0, 1.23e−23) y3

+ #E(1.99832546917372451401 · · · e−0, 2.45e−23)xy
+ #E(1.00352171725641447536 · · · e−0, 1.23e−23) y2,

F ′ = #E(9.99999999999999999999 · · · e−1, 6.33e−13) xy2

− #E(568.429046071616395538 · · · e−0, 3.60e−10)xz2

+ #E(565.429585271231326003 · · · e−0, 3.58e−10)xy
− #E(566.434224887207346419 · · · e−0, 3.59e−10)x.



G6 is changed only a little by the matrix method: the error-parts of the coeffi-
cients of G6 are changed only in the third digits.

The F ′ does not appear in the final basis, but if we discard F ′ just when it
is generated, the resulting basis becomes very different from the basis over Q.
The F ′ suggests that, once the intrinsic errors of considerable amounts occur,
the computation will become unstable. ¤

We mentioned in 1 that we want to know the amounts of intrinsic errors. If
the errors due to the systematic exact cancellations are eliminated completely,
then the resulting errors are intrinsic. We can expect that the matrix method
will avoid the systematic exact cancellations almost completely. Then, we may
say that the matrix method informs us the amounts of intrinsic errors.

5 Actual implementation and discussions

In this section, by “quality improvement of a polynomial” we mean reducing the
error-parts of the polynomial coefficients by the matrix method.

In examples in 4, qualities of final polynomials were improved directly from
the initial ones. In this approach, we must often handle matrices of very large
sizes. For example, in Example 4, we handled matrices of sizes 143 × 109 and
112× 88, and the cost of matrix reduction is about twice of that of the Gröbner
basis computation itself. Furthermore, in this approach, we know the amounts
of intrinsic errors only at the final stage, where initial accuracies of some poly-
nomials may be lost at all. Therefore, we improve the qualities of polynomials
not only in the final but also in intermediate bases.

We divide the whole computation into many stages, the initial stage, the 1-st
stage, the 2-nd stage, and so on. In the beginning of the k-th stage, we have a set
of starting polynomials {F (k)

1 , . . . , F
(k)
rk }. At the end of the k-th stage, we improve

the qualities of all the existing polynomials, and the improved polynomials are
used as the starting polynomials of the (k+1)-st stage:

Φ0 = {F (0)
1 , . . . , F (0)

r0
} −→ · · · −→ Φk = {F (k)

1 , . . . , F (k)
rk

} −→ · · · . (5)

Each stage is closed and the next stage begins when a systematic cancellation of
amount Csmall or more is detected or when the cancellations accumulate to Cmed

or more (Csmall = 100 and Cmed = 1000 in the current program). The quality
improvement is performed by the following two procedures.

improvePols(Φ): this procedure is called at the end of each stage, and it im-
proves the quality of every polynomial in the basis Φ, intermediate or final.
Each polynomial is then replaced by the improved one.

improvePol(P ): this procedure improves a single polynomial P and checks
whether P is actually reduced to 0. This procedure is called when the can-
cellation of Cbig or more is detected in Spol(P1, P2) or P ′ Q−→→ P (Cbig = 106

in the current program).



One important notice in this approach is that the systematic exact can-
cellation may not be removed inside a single stage. A typical mechanism of
systematic exact cancellation is as follows. Suppose polynomials P1 and P2 are
reduced by Q the leading term of which is small: Pi

Q−→ P̃i (i = 1, 2) (P1 and
P2 may be reduced by Q1, . . . , Qk). Then, Pi ≈ −(lt(Pi)/lt(Q)) rt(· · · rt(Q) · · · ),
and the multiples of rt(· · · rt(Q) · · · ) cancel exactly in subsequent Spol(P̃1, P̃2)
or Lred(P̃1, P̃2). In [14, 15], we called P̃1 and P̃2 clones of Q, and the subsequent
cancellation self-reduction. Suppose the clones are generated in the k-th stage
and the self-reduction of the clones occurs in the l-th stage. If k = l then the
quality improvement at the end of the l-th stage will remove the systematic ex-
act cancellation. If, however, k < l then we must back to the k-th stage so as to
remove the cancellation occurred in the l-th stage. On the other hand, for the
systematic inexact cancellation, we need not back to previous stages.

Another important notice is on how to express polynomials in the l-th stage
by the starting polynomials in the k-th stage when l > k+1. One may think that
we can do this by connecting syzygies in the k-th to l-th stages. This is true if no
quality improvement is made in the stages. However, in many cases, the quality
improvement changes the polynomial structure; some terms may be missing and
some terms may be added by the improvement. Therefore, we compute the
polynomials in the l-th stage as follows: first, compute the starting polynomials
of the (k+1)-st stage by using the syzygies, then compute the polynomial in the
l-th stage by applying Buchberger’s procedure to the starting polynomials in the
(k+1)-st stage.

So far, we have tested only a preliminary version which does not back stages.
We show some timing data on Lenovo IdeaPad U450p (1.2GHz, 1MB), where we
used efloats of 30 decimal precision. Each Gröbner basis computed is the same
as that over Q up to double precision.

(unit: milliseconds)
(datum 1180 for Katsura-4 is by the computation over Q)

sample high-prec. method with quality-improve
Example-4 3.6 10.4
Example-5 1.8 7.6
Example-6 2.4 28.0
Katsura-4 [1180 (+320GC)] 824 (+112GC)

Katsura-4 contains 4 polynomials of total-degree 2 and 1 polynomial of
total-degree 1, in 5 variables. The Gröbner basis w.r.t. the total-degree
order is composed of 16 polynomials of total-degrees 1 to 5.

We found the following features of our method.
1. Gaussian elimination with partial pivoting which selects a row is often fail

to reduce the errors well, but the full pivoting which selects the maximum
magnitude element works well. We also tested matrix reduction by the Givens
rotation, and found that this reduction method is much more expensive than
the Gaussian elimination.



2. Procedure improvePol(P ) is quite effective for detecting whether P should
be regarded as 0.

3. If a considerable amounts of intrinsic errors occur on a polynomial P , then
the errors propagate to other polynomials via Spol(P, P ′) and F

P−→→ F̃ ,
and the computation becomes unstable soon. (In Katsura-4, we encountered
no intrinsic cancellation.)

We must comment on the above point 3. One may think that the point 3.
implies a severe limitation of our method. Our opinion is completely different.
We note that we have tested polynomials of limited accuracies: we have con-
verted the coefficients of given polynomials into double-precision floating-point
numbers, which introduces O(10−16) relative errors, then converted them into
efloats of 30 decimal precision. When handling polynomials of limited accuracies,
the bases computed have no meaning if the initial accuracies are lost during the
computation. Therefore, in order to obtain some meaningful results, we must
discard polynomials the accuracies of which were lost largely. That is, we must
define “approximate Gröbner bases” so that the polynomials of very low accu-
racies are discarded by some criteria derived theoretically.

In [14], we have tried to define approximate Gröbner bases by using syzygies.
However, the definition in [14] is too immature. We explain this by considering G2

in Example 2. The syzygy computed by Buchberger’s procedure contains a term
of magnitude O(104), which does not mean that the intrinsic cancellations of
magnitude O(104) occur in the computation of G2. In fact, Example 4 shows that
no intrinsic cancellation occurred on G2. Therefore, we must define approximate
Gröbner bases without using syzygies. We are now trying to define approximate
Gröbner bases more appropriately.
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